Abstract

A short general introduction to Architecting, CAFCR framework and Architectural Reasoning is given. We explore the creation of an ATM case with the CAFCR framework. We start with existing requirements and then we explore customer and future needs.
What is Architecting?

vague notion of the problem

vague notion of potential solutions

architecture description:
• articulated
• structured
problem and solution know-how

architecting method:
• framework
• submethods
• integration methods

basic methods

architecting

Report
Spec
Design

Architectural Reasoning Illustrated by an ATM Example
Gerrit Muller
The “CAFCR” model

What does Customer need in Product and Why?

- Customer What: objectives
- Application How
- Product What
- Conceptual How
- Realization

drives, justifies, needs

enables, supports
Integrating CAFCR

What does Customer need in Product and **Why**?

- **Customer** What: Customer objectives
- **Customer** How: Application
- **Product** What: Functional, Conceptual
- **Product** How: Realization

- **Context** understanding
- **Intention** driven
- **Objective** driven
- **Opportunities**
- **Constraint** awareness
- **Knowledge** based
CAFCR can be applied recursively

- Consumer
 - Drives
 - Enables
 - Customer's Business
 - Drives
 - Enables
 - System (producer)
 - Drives

- Value Chain: larger scope has smaller influence on architecture

Architectural Reasoning Illustrated by an ATM Example
Gerrit Muller
Example of a small buying organization

Who is the customer?

- CFO: Chief Financial Officer
- CIO: Chief Information Officer
- CMO: Chief Marketing Officer
- CEO: Chief Executive Officer
- CTO: Chief Technology Officer
- decision maker(s)
- purchaser
- department head
- user
- maintainer
- operator

CEO: Chief Executive Officer
CFO: Chief Financial Officer
CIO: Chief Information Officer
CMO: Chief Marketing Officer
CTO: Chief Technology Officer
Connecting System Design to Detailed Design

- System
- Multi-disciplinary
- Mono-disciplinary
- Requirements
- Design decisions
- Parts
- Connections
- Lines of code
- And growing every year....
Organizational Problem: Disconnect

What does Customer need in Product and **Why**?

- Customer objectives
- Application
- Functional
- Conceptual
- Realisation

How can the product be realized

- System requirements
- Design decisions
- Parts
- Connections
- Lines of code
- and growing every year...

Architectural Reasoning Illustrated by an ATM Example

version: 0
September 9, 2018
RATWdisconnect
Architect: Connecting Problem and Technical Solution

Customer objectives

Application

Functional

Conceptual

Realisation

What does Customer need in Product and **Why**?

How can the product be realized

What are the critical decisions?

- How can the product be realized
- What are the critical decisions
- What does Customer need in Product and Why?

Architectural Reasoning Illustrated by an ATM Example

- Gerrit Muller

- September 9, 2018

- RATWbreadthAndDepth

- Architectural Reasoning Illustrated by an ATM Example

- version: 0

- Gerrit Muller

- September 9, 2018

- RATWbreadthAndDepth
Major Bottleneck: Mental Dynamic Range

Architectural Reasoning Illustrated by an ATM Example

version: 0
September 9, 2018
RATWmentalDynamicRange

Gerrit Muller
<table>
<thead>
<tr>
<th>1. ATM Specification and Design Status Quo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise: Identify Critical Design Decisions</td>
</tr>
<tr>
<td>Exercise: What is the Minimal Cost of the Controller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Customer and Life Cycle Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise: What are Important Future Customer Concerns</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. The Big (Complicated) Picture</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. Thread of Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise: What did You Learn?</td>
</tr>
</tbody>
</table>
Step 1, Status Quo

understanding the status quo

system

multi-disciplinary

mono-disciplinary

critical details

original input

essence of problem

number of details

10^0

10^1

10^2

10^3

10^4

10^5

Architectural Reasoning Illustrated by an ATM Example

version: 0
September 9, 2018
ARATMessence
5.0 Operational Phase Requirements *(partial)*

5.1 Input/Output Requirements

5.1.1 Input Requirements

5.1.1.1 The ATM system shall accept a general ID from the customer.
5.1.1.2 The ATM system shall accept a unique ID from the customer.
5.1.1.3 The ATM system shall accept customer requests, including requests for deposits and requests for withdrawals.
5.1.1.4 The ATM system shall accept customer input, including account type (i.e., savings, checking, and bank credit), amount of deposit, deposit type (cash vs. check), and amount of withdrawal (Creq).
5.1.1.5 The ATM system shall accept a cash/check deposit from the customer.
5.1.1.6 The ATM system shall accept the amount of available funds from the bank computer. (Fmax).
5.1.1.7 The ATM system shall accept an employee code from a bank employee.
5.1.1.8 The ATM system shall accept a request to open from the bank employee.
5.1.1.9 The ATM system shall accept cash from the bank employee.
5.1.1.10 The ATM system shall accept blank receipts from a bank employee.
5.1.1.11 The ATM system shall accept a request to close from the bank employee.
5.1.1.12 The ATM system shall accept an initialization instruction from a bank employee.

5.1.2 Output Requirements:

5.1.2.1 The ATM system shall provide a request for unique ID to the customer.
5.1.2.2 The ATM system shall provide requests for customer input, including activity type, account type, deposit amount, and type of deposit (cash vs. check).
5.1.2.3 The ATM system shall provide a means for the customer to physically insert a deposit (cash/check).
5.1.2.4 The ATM system shall provide a record of a transaction to the bank computer.
5.1.2.5 The ATM system shall provide a request for the amount of available funds to the bank computer (Fmax).
5.1.2.6 If Fmax ≥ Creq and Cmax ≥ Creq, the ATM shall provide the cash withdrawal to the customer. (Clim = the maximum withdrawal allowed for the particular ATM.)
5.1.2.7 The ATM system shall provide a receipt for a transaction to the customer.
5.1.2.8 The ATM system shall provide the main menu to the customer.
5.1.2.9 The ATM system shall provide employee access to a valid bank employee.
5.1.2.10 The ATM system shall provide physical access to a valid bank employee.
5.1.2.11 The ATM system shall provide customer deposits and payments to a bank employee.
5.1.2.12 The ATM system shall provide confirmation that it has been locked to the bank employee.

2.0 ATM System Operational Phase Scenarios

1) Customer makes deposits.
 - Customer provides valid general identification information.
 - ATM requests unique identification information.
 - Customer enters unique identification information.
 - ATM requests activity selection.
 - Customer selects deposit.
 - ATM requests account type.
 - Customer identifies account type (i.e., savings, checking, and bank credit card).
 - ATM requests amount of deposit.
 - Customer identifies amount of deposit (Dmno).
 - ATM requests type of deposit (cash vs. check).
 - Customer identifies type of deposit-cash/check.
 - ATM provides a means to physically insert cash/check into ATM.
 - Customer enters deposit.
 - ATM transmits the transaction to the main bank computer, gives customer receipt, and returns to main menu.

excerpts from SYS 650 System Architecture and Design
ATM Case Study
Copyright Michael Pennotti, PhD. and
Stevens Institute of Technology
Adapted from a case study by Dennis Buede, Ph.D.
ATM Typical Function Flow

1. **Customer Identification and Authentication**
2. **Determine Request Type and Amount** (Deposit or Withdrawal)
3. **Validate Amount**
4. **Transfer Money and Update Account**

Architectural Reasoning Illustrated by an ATM Example

Gerrit Muller

Version: 0
September 9, 2018
ARATMFunctionalDiagram
Objectives

from SYS 650 System Architecture and Design
ATM Case Study
Copyright Michael Pennotti, PhD. and
Stevens Institute of Technology
Adapted from a case study by Dennis Buede, Ph.D.
Impact of ATM introduction

old situation

branch office

personnel
counter
customers

main office

personnel
counter
customers

new situation

main office

personnel
counter
customers

branch office

ATM

ATM

branch office

ATM

ATM

customers
Identify critical design decisions

Critical: high risks, sensitive or vulnerable, high impact on objectives

What decisions are critical?

Why are these decisions critical?

How do you decrease the risk?
Exercise: What is the Minimal Cost of the Controller

Determine Minimal Cost Controller

Identify multiple controller alternatives.

Estimate cost per alternative.

What is the impact on other design aspects?

What is the impact on the objectives?
Step 2, Customer and Life Cycle Perspective

Customer objectives
Application
Functional
Conceptual
Realization

Objectives
Requirements scenarios
Critical design decisions

Value chain
Future concerns
Impact on specification and design
Value Chain and Customer Concerns

- Consumers
 - Ease of use
 - Convenience
 - Ease of mind

- Bank corporation
 - Profit / cost of operation
 - Smooth operation / availability
 - Market share / customer base
 - Security

- ATM manufacturer
- Infrastructure and service providers

Concerns
- Profit / cost of operation
- Smooth operation / availability
- Market share / customer base
- Security
What are Important Future Customer Concerns?

Describe or visualize these concerns very specific.

What are the consequences of replacing offices with machines?

What is the biggest nightmare of the management and the consumers?

How is the current system prepared for these future concerns?
The following slides provide some answers of the previous exercises.

Continue only after going through the exercises!
Examples of Critical Design Issues

- Security design
- Exception handling
- Operating system
- Controller hardware

- Cost
- Performance
- Functionality
- Development effort
- Availability
- Design size and complexity
- Security
Examples Controller Alternatives

<table>
<thead>
<tr>
<th>minimal cost design</th>
<th>PC oriented design</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW material cost: 100$</td>
<td>HW material cost: 500$</td>
</tr>
<tr>
<td>SW license cost: 0$</td>
<td>SW license cost: 40$</td>
</tr>
<tr>
<td>SW size: 20kloc</td>
<td>SW size: 120kloc</td>
</tr>
</tbody>
</table>

state table

- state machine engine
- HW handlers
- watchdog
- 8 bit controller

middleware framework

- embedded Windows
- drivers
- interfaces
- industrial PC

OO based application

- Architectural Reasoning Illustrated by an ATM Example
 - 25
 - Gerrit Muller
Example of Customer Contact Concern

old situation

branch office
- personnel
- counter
- customers

main office
- personnel
- counter
- customers

new situation

main office
- personnel
- counter
- customers

branch office
- personnel
- counter
- customers

ATM
- ATM

important assets of bank:
- brand name
- customer base

Main point of contact moves from office to ATM!

ATM visit is short opportunity to bind and sell. Promotion offers, new products, via animations and ...?
De belangrijkste feiten:
– PIN gaat over op EMV
– Geen hoge kosten door geleidelijke invoering
– Volledige invoering verwacht rond 2013
– Magneetstrip werkt nog lange tijd

translation:
+ PIN changes into EMV standard
magnet strip replaced by chip
- introduction complete ca 2013

Security relates to all system aspects
from bank management, personnel and processes
down to network medium and hardware drivers.
The bad guys also make lots of progress.
Step 3, The Big (Complicated) Picture

Customer Objectives:
- Cost reduction
- Security
- Customer contacts
- Sales promotion
- Brand image

Application:
- Personnel office reduction
- Procedures
- PIN code

Functional:
- Availability
- ATM
- Material cost
- Identification authentication

Conceptual:
- Controller design
- Exception handling
- Animation

Realization:
- Controller
- State table
- Minimal code
- Watch dog
- Industrial PC
- Full fledged OS
- Full color display

Architectural Reasoning Illustrated by an ATM Example
version: 0
September 9, 2018
ARATMgraph
Step 4, Thread of Reasoning

Customer objectives
- cost reduction
- security
- customer contacts
 - sales promotion
 - brand image

Application
- personnel office reduction
- procedures
 - PIN code
- availability

Functional
- ATM
- material cost
- identification authentication
- exception handling
- animation

Conceptual
- controller design
- state table
- minimal code
- watch dog

Realization
- u controller
- industrial PC
- full fledged OS
- full color display

Architectural Reasoning Illustrated by an ATM Example

version: 0
September 9, 2018
Exercise: What did You Learn?

What did You Learn?

Where did we start?

What are the iterative steps that we took?

What are the new insights?

How SMART is the result?

What do we still have to do?
The following slides provide some answers of the previous exercises.

Continue only after going through the exercises!
What is next?

We made a very fast iteration over many viewpoints.

Most reasoning has been qualitative.

Fact finding and quantification needed to determine relevant and significant issues.

Keep on iterating and sharpening!