Abstract

The transition from capabilities provided by traditional physical systems to today's capabilities provided by heterogeneous systems of systems complicates architecting. In this paper, we look at trends in this ongoing transition, especially into the degree of heterogeneity of technologies and the context. We observe in an increase in virtual intangible technologies from the cyber domain, and an increase in human and organization aspects. Main question is how the heterogeneity of concerns, needs, considerations, and technologies impacts architecting and the role of architects.
The challenge of increasing heterogeneity in SoS for architecting

Introduction
SoS background
Disappearing boundaries
Heterogeneity
Conclusion
Observations from teaching in various domains

- Health care
- Defense
- Maritime
- Oil and gas
- Manufacturing
- OEM equipment for imaging, printing, machining
- Automotive
Trends across domains

- Growth of data/information collection
- High expectations from harvesting useful data across systems to improve performance and functionality
- Infrastructure platforms using cloud technology, factoring out common digital functionality
- Ubiquitous use of commodity devices as smart phones, tablets, and laptops
- Focus on trustworthiness and affordability
- More automation and considering autonomy
- Societal pressure for privacy and responsible behavior
The challenge of increasing heterogeneity in SoS for architecting

Introduction

SoS background

Architecting

Disappearing boundaries

Heterogeneity

Conclusion
<table>
<thead>
<tr>
<th>Boardman and Sauser</th>
<th>Maier</th>
<th>DeLaurentis</th>
<th>Dahmann and Baldwin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomy</td>
<td>Operational independence</td>
<td>Type</td>
<td>Directed</td>
</tr>
<tr>
<td>Belonging</td>
<td>Managerial independence</td>
<td>Control (or autonomy)</td>
<td>Acknowledged</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Geographic separation</td>
<td>Connectivity</td>
<td>Collaborative</td>
</tr>
<tr>
<td>Diversity</td>
<td>Emergent behavior</td>
<td></td>
<td>Virtual</td>
</tr>
<tr>
<td>Emergence</td>
<td>Evolutionary development</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of Systems of Systems

Directed - The SoS is centrally managed

Acknowledged - The SoS has recognized objectives, and active cooperation between SoS and constituent systems

Collaborative - The constituent systems and stakeholders cooperate

Virtual - The SoS nature more or less emerge from the constituent systems

The challenge of increasing heterogeneity in SoS for architecting

Gerrit Muller
The architecting playing field

- Organizational context:
 - Customer organization
 - Business organization
 - Developing organization
 - Supplying organizations

- Operational and lifecycle context:
 - Customer value proposition
 - Business proposition

- System requirements

- Technology

The challenge of increasing heterogeneity in SoS for architecting
Thinking skills in Blooms revised taxonomy

- Higher Order Thinking Skills
 - More difficult to teach
 - More valuable
 - Takes time to develop

- Lower Order Thinking Skills
 - Can be acquired fast
 - Must be mastered before, however when missing can be acquired fast

- Remembering
- Understanding
- Applying
- Analyzing
- Evaluating
- Creating
The challenge of increasing heterogeneity in SoS for architecting

Gerrit Muller

version: 0.2
September 9, 2018
CHSOSlogoBoundaries
Where are the System Boundaries?

Information and Communication infrastructure

- Data collection
- Analysis
- Learning

Cloud

- Storage
- Services
- Other physical systems

Other clouds

Data providers

Specific services

Related services

Unrelated services

Mobile access

Flex workspots

Local operating stations

Physical system

Physical system

Public and proprietary apps
Heterogeneity

The challenge of increasing heterogeneity in SoS for architecting

14 Gerrit Muller
New Virtual Technologies

traditional (physical) technologies

- chemical engineering
- mechanical engineering
- electrical engineering
- optical engineering
- civil engineering
- operations research
- physics

upcoming technologies

- Internet of Things
- miniaturized and commoditized sensors
- ubiquitous networking, storage and processing resources
- Artificial Intelligence, ((deep) learning, data mining, data analytics)
- block chain
- microservices
- clouds
Non-technical heterogeneity

non-technical considerations

- economical
- ecological
- legal
- social
- political
- psychological
- criminal

human behavior:
emotions, social pressure, political gains may trigger unexpected behavior.
The challenge of increasing heterogeneity in SoS for architecting

Gerrit Muller
tension between control and emergence

safety, security, etc. requiring analysis and control

versus

emerging and changing behavior, e.g. due to Artificial Intelligence

clear ownership

versus

dynamic allocation and distribution of services
Conclusion

The challenge of increasing heterogeneity in SoS for architecting

19 Gerrit Muller
Systems of Systems Integration continues in the field during operation.

Ownership and responsibility for end-to-end performance is ill-defined.

Your system may be blamed for problems with a root cause elsewhere.

End-to-end performance depends on a mix of:

- traditional technical systems
- modern technologies like learning
- humans in their organizational and societal context (psychological, social, political, economical, legal, etc.)
- the physical context (location, climate, etc.) and laws of physics.
The challenge of increasing heterogeneity in Systems of Systems for architecting

https://gaudisite.nl/SoSE2018_Muller_heterogeneity.pdf