Abstract

Teaching systems engineering differs from teaching a mono-disciplinary course, because the focus is much more on skills and less on transferable facts. The teacher must trigger a learning process in the students that stimulates the student to become active with the subject in a perceptive, reflective, and explorative way. This paper provides a number of recommendations for interaction, illustration, soft skill development, the use of media and student feedback.
INCOSE 2004 Academic Forum

Systems Engineering Education:

graduate and postgraduate,

but often an extension of regular engineering education.

Experience in SE education

"effective transfer of know-how requires an active attitude from the audience"

Experiences of Teaching Systems Architecting, Gerrit Muller at INCOSE 2004

didactic recommendations
Example Postgraduate Programs Systems Engineering

Stevens Institute Systems Engineering and Engineering Management
http://www.soe.stevens.edu/seem/

MIT System Design and Management
http://lfmsdm.mit.edu/sdm/index.html

University of South Australia
http://www.unisa.edu.au/seec/
BA Graduate SE Programs in USA

<table>
<thead>
<tr>
<th>University of Arizona</th>
<th>128 credit hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Arkansas at Little Rock</td>
<td>130</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>120</td>
</tr>
<tr>
<td>University of Virginia</td>
<td>128</td>
</tr>
<tr>
<td>U.S. Naval Academy</td>
<td>143</td>
</tr>
<tr>
<td>Washington University</td>
<td>120</td>
</tr>
</tbody>
</table>

+ Credit hours for BS programs varies between 120 – 143
+ All BS programs build on basic engineering and science courses.
+ Programs differ in their emphasis areas from university to university although the systems engineering fundamental courses remain the same.
+ Some universities offer considerable amount of flexibility in their BS programs by creating emphasis areas.

source: Professor Cihan H Dagli, PhD at INCOSE 2004, Toulouse

Undergraduate Education in Systems Engineering in USA
Systems Architecting Curriculum

Didactic Recommendations for Education in Systems Engineering

version: 0
June 21, 2020
SXcurriculumSA
Active vs Passive

passive

Theory
dull

Insight

Practical Illustration
vivid

active

Interaction
vivid

Spin-off:
cross-fertilization

Abstraction

Exercise

Didactic Recommendations for Education in Systems Engineering

version: 0
June 21, 2020

DRSEpassiveVsActive
Finding the Balance Active-Passive

Insufficient digestion of know how
Insufficient know how transfer

% active

10 20 30 40 50 60 70 80

1999 2000 2001 2002 2003 2004 2005

SARCH

Insufficient digestion of know how
- Pose questions to the students
- Keep the communication open in all directions
- Keep the students alert
- Maintain a consistent mindset
Example questions

Provocative:

What is the most important process in your company?

Differentiate between important or core processes and less important supporting processes.

Explorative:

What are the deliverables of an architect?

Followed by f.i. "What are deliverables?"

Inviting experiences:

Who has seen a roadmap?

Followed by the question "What was the contents of this roadmap?"

Or "What is the value of this roadmap for the organization?"
Keep the Communication Open

- Allow or even stimulate discussion
- Managing two-way communication, the parking flip
- Creating an open and safe learning environment, rules:
 - Argue in a constructive way, no heat seeking missiles allowed!
 - Stupid questions don't exist
Keep the students alert

platform approaches reduce lead-time, cost, ...

platform developments in practice increase lead-time, cost, ...

student

teacher

counter-intuitive examples

"What do patient or insurance company need or expect?"

sudden changes of viewpoint
Maintain a consistent mindset

Be customer, market, and result oriented

Use common sense

Use multiple viewpoints

Be constructively critical

Maintain your integrity and credibility as an architect

Use facts, be specific

Communicate clearly and to the point, provide overview
Example maintain mindset by keeping alert

"Why do we need this amount of software?"
"How much work is required with this amount of software?"
"If the customer really needs this, how can we serve the customer anyhow?"

We cannot do this, because the amount of software is way too large

student

teacher
Soft Skill Development

- presenting
- teamwork
- self-reflection
- providing balanced feedback
The Use of Media

course material
+ slides
+ reader

low-tech support
+ flips
+ yellow notes
Exercise instruction:
short, asking for illustration and specifics

show the operational organization where you are operating, mention the names of the people involved explicitly

Team size:
4 is optimal; 3 or 5 members is acceptable

Duration
40 minutes