Abstract

This module addresses Scenarios, Story Telling and Use Cases. Scenarios are used to cope with multiple alternatives for specification or design. Story telling is a means to explore customer needs and as a means for communication. Use Cases are used to analyze the design for specific circumstances.
Module Scenarios, Story Telling, Use Cases

Goal of this Module

- Be able to apply story telling technique.
- Be able to use scenario analysis.
- Be able to use use-cases for design.

Content of this Module

- Format and criteria for stories
- Elements of scenarios
- Role of scenarios in decision making
- Quantified use cases

Exercise

Create a story and translate story via use cases in design
Abstract

A story is an easily accessible story or narrative to make an application live. A good story is highly specific and articulated entirely in the problem domain: the native world of the users. An important function of a story is to enable specific (quantified, relevant, explicit) discussions.
From story to design

What does Customer need in Product and Why?

Customer
Customer What
Customer How

Product
Product What

Application
Functional
Conceptual
Realization

Customer objectives

a priori solution knowledge

market vision

story

analyze design

case

analyze design

design
A day in the life of Bob

Bla blah bla, rabarber music, bla bla composer, bla bla qwwwety, 30 zeps.

Nja nja njet njiipie est quo vadis? Pjotr jaleski, bla bla, bla bimoe tfgf gsg hgrg

Mmm bas engel heeft een interessant excuns. Lex stelt voor om vanavond door te werken.

In the middle of the night he is awake and decides to change the world forever.

The next hour the great event takes place:

This brilliant invention will change the world forever because it is so unique and valuable that nobody believes the feasibility. It is great and WOW at the same time, highly exciting.

Vtables are seen as the solution for an indirection problem. The invention of Bob will obsolete all of this in one incredible move, which will make him famous forever.

He opens his PDA, logs in and enters his private secure unique non trivial password, followed by a thorough authentication. The PDA asks for the fingerprint of this little left toe and to pronounce the word shit. After passing this test Bob can continue.
Points of attention

- **Purpose**: What do you need to know for specification and design?
- **Scope**: "umbrella" or specific event?
- **Viewpoint, stakeholders**: Define your stakeholder and viewpoint f.i. user, maintainer, installer
- **Visualization**: Sketches or cartoon Helps to share and communicate ideas
- **Size (max 1 A4)**: Can be read or told in few minutes
- **Recursive decomposition, refinement**
Criteria for a good story

- accessible, understandable
 "Do you see it in front of you?"

- valuable, appealing
 attractive, important
 "Are customers queuing up for this?"

- critical, challenging
 "What is difficult in the realization?"
 "What do you learn w.r.t. the design?"

- frequent, no exceptional niche
 "Does it add significantly to the bottom line?"

- specific
 names, ages, amounts, durations, titles, ...
Example of a story

Betty is a 70-year-old woman who lives in Eindhoven. Three years ago her husband passed away and since then she lives in a home for the elderly. Her 2 children, Angela and Robert, come and visit her every weekend, often with Betty’s grandchildren Ashley and Christopher. As so many women of her age, Betty is reluctant to touch anything that has a technical appearance. She knows how to operate her television, but a VCR or even a DVD player is way to complex.

When Betty turned 60, she stopped working in a sewing studio. Her work in this noisy environment made her hard-of-hearing with a hearing-loss of 70dB around 2kHz. The rest of the frequency spectrum shows a loss of about 45dB. This is why she had problems understanding her grandchildren and why her children urged her to apply for hearing aids two years ago. Her technophobia (and her first hints or arthritis) inhibit her to change her hearing aids’ batteries. Fortunately her children can do this every weekend.

This Wednesday Betty visits the weekly Bingo afternoon in the meetingplace of the old-folk’s home. It’s summer now and the tables are outside. With all those people there it’s a lot of chatter and babble. Two years ago Betty would never go to the bingo: “I cannot hear a thing when everyone babbles and clatters with the coffee cups. How can I hear the winning numbers?!”. Now that she has her new digital hearing instruments, even in the bingo cacophony, she can understand everyone she looks at. Her social life has improved a lot and she even won the bingo a few times.

That same night, together with her friend Janet, she attends Mozart’s opera The Magic Flute. Two years earlier this would have been one big low rumbly mess, but now she even hears the sparkling high piccolos. Her other friend Carol never joins their visits to the theaters. Carol also has hearing aids, however hers only “work well” in normal conversations. “When I hear music it’s as if a butcher’s knife cuts through my head. It’s way too sharp!”. So Carol prefers to take her hearing aids out, missing most of the fun. Betty is so happy that her hearing instruments simply know where they are and adapt to their environment.
Value and Challenges in this story

<table>
<thead>
<tr>
<th>Customer objectives</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value proposition in this story:</td>
<td></td>
</tr>
<tr>
<td>quality of life:</td>
<td>active participation in different social settings</td>
</tr>
<tr>
<td>usability for nontechnical elderly people:</td>
<td>"intelligent" system is simple to use</td>
</tr>
<tr>
<td>loading of batteries</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conceptual</th>
<th>Realization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges in this story:</td>
<td></td>
</tr>
<tr>
<td>Intelligent hearing instrument</td>
<td></td>
</tr>
<tr>
<td>Battery life — at least 1 week</td>
<td></td>
</tr>
<tr>
<td>No buttons or other fancy user interface on the hearing instrument, other than a robust On/Off method</td>
<td></td>
</tr>
<tr>
<td>The user does not want a technical device but a solution for a problem</td>
<td></td>
</tr>
<tr>
<td>Instrument can be adapted to the hearing loss of the user</td>
<td></td>
</tr>
<tr>
<td>Directional sensitivity (to prevent the so-called cocktail party effect)</td>
<td></td>
</tr>
<tr>
<td>Recognition of sound environments and automatic adaptation (adaptive filtering)</td>
<td></td>
</tr>
</tbody>
</table>

source: Roland Mathijssen, Embedded Systems Institute, Eindhoven
Abstract

Good designers keep multiple alternatives open in parallel. This improves the specification and design quality. Scenarios can be used to cope with these alternatives and as a means for communication with stakeholders.
content of this presentation

Decision making

Multiple propositions

Scenarios
Decision Making Process

1. Problem understanding
2. Analysis
3. Decision
4. Monitor, verify, validate

insufficient data
no satisfying solution
invalidated solution
conflicting other decision
vague problem statement

Scenario How To
version: 0
September 9, 2018
ADMdecisionFlow
Flow from problem to solution

1. Problem understanding by exploration and simple models

2. Analysis by
 + exploring multiple propositions (specification + design proposals)
 + exploring decision criteria (by evaluation of proposition feedback)
 + assessment of propositions against criteria

3. Decision by
 + review and agree on analysis
 + communicate and document

4. Monitor, verify, validate by
 + measurements and testing
 + assessment of other decisions

vague problem statement

conflicting other decision

insufficient data

no satisfying solution

invalidated solution

Scenario How To
Gerrit Muller
version: 0
September 9, 2018
TORdecisionFlow
Example of Multiple Propositions

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Cost</th>
<th>Safety</th>
<th>Sensor</th>
<th>Moves</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 p/m</td>
<td>5 k$</td>
<td></td>
<td>high-performance</td>
<td>high-speed moves</td>
<td>pipelining</td>
</tr>
<tr>
<td>350 ns</td>
<td>9 m/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

low cost and performance 1

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Cost</th>
<th>Safety</th>
<th>Sensor</th>
<th>Moves</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 p/m</td>
<td>5 k$</td>
<td></td>
<td>high-performance</td>
<td>high-speed moves</td>
<td></td>
</tr>
<tr>
<td>300 ns</td>
<td>10 m/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

low cost and performance 2

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Cost</th>
<th>Safety</th>
<th>Sensor</th>
<th>Moves</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 p/m</td>
<td>7 k$</td>
<td></td>
<td>high-performance</td>
<td>high-speed moves</td>
<td>collision detector</td>
</tr>
<tr>
<td>200 ns</td>
<td>12 m/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

high cost and performance
Recursive and concurrent application of flow

1. Problem understanding
2. Analysis
3. Decision
4. Monitor, verify, validate

system level

subsystem level

component level

atomic level

legend

decision flow

analysis flow
Graph of Decisions and Alternatives

legend

- past decision
- most probable decision
- potential alternative
- less probable alternative

now

communication

scope

scope of architect's considerations

time

Scenario How To
Gerrit Muller

version: 0
September 9, 2018
ADMdecisionTree
Different Types of Decisions

Understanding Why

Describing What

Guiding How

- basic principles
- requirements
- architecture rules
- implementation choices, f.i. technology
Elements of a Scenario

scenario: <clear title>

story

key specification and design decisions

case

design

scenario: <clear title>

story

key specification and design decisions

case

design

scenario: <clear title>

story

key specification and design decisions

case

design

scenario: <clear title>

story

key specification and design decisions

case

design
Summary of Scenarios

Exploration and analysis require multiple propositions.

Architects continuously work with multiple alternatives.

Scenarios have a clear title, story, use case and design.

Scenarios are differentiated by key specifications and design decisions.
Abstract

Use cases are frequently used in Software Engineering. Use cases support specification and facilitate design, analysis, verification and testing. Many designers, unfortunately, apply use cases in a rather limited way. This presentation provides recommendations for effective use cases.
Why Use Cases?

Supports or is part of specification
by providing specific data in user perspective

Facilitates analysis and design

Facilitates verification and testing
Example Time Shift recording

- 20:00: start movie
- 21:00: broadcast
- 22:00: record
- 23:00: end movie

- 20:00: phone rings
- 21:00: pause viewing
- 22:00: finish conversation
- 23:00: resume viewing

- view
- talk
- play

- version: 0.1
- September 9, 2018
Construction limits intrude in User Experience

- number of tuners
- number of simultaneous streams (recording and playing)
- amount of available storage
- management strategy of storage space
What if?

20:00 21:00 22:00 23:00

- **start movie**
- **broadcast**
- **end movie**

1. programmed recording of other station
2. very long phone call
3. Dad zaps

- phone rings
- pause viewing
- record
- play
- view
- talk
- play
- view
- finish conversation
- resume viewing
- zaps
Content of a Use Case

- user or system specified functionality
- behavior
- interfaces
- qualities (NFR's)

(input data format size content)

(output data format size content)

(sub)system or component

context interaction
Example personal video recorder use case contents

<table>
<thead>
<tr>
<th>typical use case(s)</th>
<th>worst case, exceptional, or change use case(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>interaction flow (functional aspects)</td>
<td>functional</td>
</tr>
<tr>
<td>select movie via directory</td>
<td>multiple inputs at the same time</td>
</tr>
<tr>
<td>start movie</td>
<td>extreme long movie</td>
</tr>
<tr>
<td>be able to pause or stop</td>
<td>directory behaviour in case of</td>
</tr>
<tr>
<td>be able to skip forward or backward</td>
<td>extreme many short movies</td>
</tr>
<tr>
<td>set recording quality</td>
<td>non-functional</td>
</tr>
<tr>
<td>performance and other qualities</td>
<td>response time with multiple inputs</td>
</tr>
<tr>
<td>(non-functional aspects)</td>
<td>image quality with multiple inputs</td>
</tr>
<tr>
<td>response times for start / stop</td>
<td>insufficient free space</td>
</tr>
<tr>
<td>response times for directory browsing</td>
<td>response time with many directory entries</td>
</tr>
<tr>
<td>end-of-movie behaviour</td>
<td>replay quality while HQ recording</td>
</tr>
<tr>
<td>relation recording quality and storage</td>
<td></td>
</tr>
</tbody>
</table>
Example of Quantification of Typical Use Case

3 examination rooms connected to 1 medical imaging workstation + printer

examination room: average 4 interleaved examinations / hour

image production: 20 1024^2 8 bit images per examination

film production: 3 films of 4k*5k pixels each

high quality output (bi-cubic interpolation)
Recommendations for working with use cases

+ combine related functions in one use case
- do not make a separate use case for every function
+ include non-functional requirements in the use cases

+ minimise the amount of required worst case and exceptional use cases
- excessive amounts of use cases propagate to excessive implementation efforts
+ reduce the amount of these use cases in steps
- a few well chosen worst case use cases simplifies the design
1. Create a story
 • use the criteria
2. Transform the story into a case
 • functional, as well as quantitative
3. Perform a short design exploration
 • based on the case.
4. Improve the story
 • first iteration based on feedback from case and design.
 • Use time boxes to ensure that you make all the indicated steps.
stories make discussions much more specific
+ implicit assumptions are identified
~ creating relevant stories is far from trivial
- too much fun
starting point for generalization: specification and design
Conclusions

Stories help to focus early design discussions

Scenarios help to cope with multiple alternatives

Use cases address integral use: functional and quantitative

Techniques, Models, Heuristics of this module

Story telling, criterias

Scenarios

Quantified use cases

Worst case, exceptional and change use cases