Module Supporting Processes

by Gerrit Muller HBV-NISE

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

This module addresses supporting processes, for instance documentation, templates, and reviewing.
Granularity of Documentation

by Gerrit Muller Buskerud University College
 e-mail: gaudisite@gmail.com
 www.gaudisite.nl

Abstract

The design of documentation is discussed, with emphasis on the requirements, the need for decomposition, the measures needed to maintain overview and criteria for granularity.
Requirements for the Entire Documentation Structure

Accessibility for the readers
Low threshold for the readers
Low threshold for the authors
Completeness
Consistency
Maintainability
Scalability
Evolvability
Process to ensure the quality of the information
Requirements from Reader Point of View

Convenient viewing

printing

searching

easy fast
Requirements per Document

<table>
<thead>
<tr>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cohesion (within the unit)</td>
</tr>
<tr>
<td>Low coupling (outside of the unit)</td>
</tr>
<tr>
<td>Accessibility for the readers</td>
</tr>
<tr>
<td>Low threshold for the reader</td>
</tr>
<tr>
<td>Low threshold for the author</td>
</tr>
<tr>
<td>Manageable steps to create, review, and change</td>
</tr>
<tr>
<td>Clear responsibilities</td>
</tr>
<tr>
<td>Clear position and relation with the context</td>
</tr>
<tr>
<td>Well-defined status of the information</td>
</tr>
<tr>
<td>Timely availability</td>
</tr>
</tbody>
</table>
Ease of reading, “juiciness”

High signal-to-noise ratio: information should not be hidden in a sea of words.

Understandability

Reachability in different ways, e.g., by hierarchical or full search

Reachability in a limited number of steps
single author

limited amount of reviewers
well defined documentation structure

overview specifications at higher aggregation levels

recursive application of structure and overview

delegation of review process
The Stakeholders of a Single Document

- **Project leader** is responsible for time, budget, result.
- **Architect or editor** is responsible for technical details.
- **Author** writes the specification.
- **Specification** describes the implementation.
- **Consumer** uses the implementation.
- **Implementation** realizes the artifact.
- **Others** interact with the context.

Legend:
- **Relation**
- **Artifact**
- **Stakeholder**
Decomposition of Large Documents

Granularity of Documentation

version: 1.2
January 19, 2015
DGcompoundDocument
Documentation Tree by Recursive Decomposition

Granularity of Documentation

version: 1.2
January 19, 2015

DGdocumentRecursion
Payload: the Ratio between Content and Overhead

Granularity of Documentation

version: 1.2
January 19, 2015
DGpayload

front page

- title
- identification
- author
- distribution
- status
- review

history

changes

diagrams

- tables

meta information

max 2 pages

contents

2..18 pages

1. aap
2. noot
3. mies

lists

and ca 50% text
Abstract

LEAN product development is in the process and means area pragmatic. Low tech tools, such as paper, pen and magnets, with very direct interaction are used. For communication the use of single A3-size documents is promoted, because this is a manageable amount of information.
Characteristics of LEAN

A holistic, systems approach to product development including people, processes, and technology.

Multi-disciplinary from the early start, with a drive to be fact based.

Customer understanding as the starting point.

Continuous improvement and learning as cultural value.

Small distance between engineers and real systems, including manufacturing, sales and service and the system of interest.
Example of A3 Architecture Overview
multiple related views

quantifications

one topic
per A3

capture
"hot" topics

digestable
(size limitation)

practical
close to stakeholder experience

source: PhD thesis Daniel Borches http://doc.utwente.nl/75284/
Light Weight Review Process

by Gerrit Muller Buskerud University College
 e-mail: gaudisite@gmail.com
 www.gaudisite.nl

Abstract

A light weight review process is described that can be used for documents made during product creation. This review process is focused on improving the contents of specifications as early as possible. The process is light weight to increase the likelihood that it is performed *de facto* instead of *pro forma*.
Product Life Cycle and Change Management

product creation

micro specification control board
project team present
specification = communications means
very dynamic, many changes
light weight review process

production

used by customers

maintenance control board
no project team any more
documentation = organizational memory
changes only to cope with logistics or safety problems

years →
Light Weight Specification Review Process

- wide group of people, with an active concern or an expected contribution;
- many iterations
- multiple media:
 - meetings,
 - on paper
 - informal et cetera

specification specific Change Control Board
4 peoples/roles:
 1 producer
 1 consumer
 1 context
 1 independent

criteria for reviewers:
 + know how
 + critical
 + sufficient time

by "lowest" operational manager:
 project leader, subsystem PL, ...

the author is responsible for contents and organization of the flow (consults and review)
Abstract

The introduction of a new process (way of working) is quite often implemented by supplying ready-to-go tools and templates. This implementation mainly serves the purpose of a smooth introduction of the new process. Unfortunately the benefits of templates are often cancelled by unforeseen side-effects, such as unintended application, inflexibility, and so on. This intermezzo gives hints to avoid the Template Trap, so that templates can be used more effectively to support introduction of new processes.
Rationale for Templates

- Low threshold to apply a (new) process (1)
- Low effort to apply a (new) process (2)
- No need to know low level implementation details (3)
- Means to consolidate and reuse experiences (4)
Bogus Arguments for Templates

- Obtain a uniform look (5)
- Force the application of a (new) process (6)
- Control the way a new process is applied (7)
Forces of Change: Action = - Reaction

\[\sum \text{all Forces} \]

New Process \(\rightarrow \) induces \(\leftrightarrow \) Reaction \(\rightarrow \) Support \(\rightarrow \) counteract

Net change = Net change
Template as Support for Process

principle → **drives** → process → **elaborated in** procedure → **supported by** tool template

abstract → specific and executable
Types of Templates

recommended template type

layout only

title, date

meta information

prescribing contents

Template How To
25 Gerrit Muller

version: 1.6
January 19, 2015
THTTypes
Recommendation

<table>
<thead>
<tr>
<th>template type</th>
<th>context knowhow</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>layout only</td>
<td>no</td>
<td>low</td>
</tr>
<tr>
<td>meta information</td>
<td>process</td>
<td>high</td>
</tr>
<tr>
<td>prescribing content</td>
<td>process and domain</td>
<td>constraining</td>
</tr>
<tr>
<td></td>
<td>Use templates for meta-information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use checklists for structure and contents.</td>
<td></td>
</tr>
</tbody>
</table>
Templates are an optimization of the Copy Paste Modify pattern:

- Look for a similar problem
- Copy its implementation
- Modify the copy to fulfil the new requirements
Spiral model: Use before Re-use
Mandatory per page:

- Author
- Title
- Status
- Version
- Date of last update
- Unique Identification
- Business Unit
- Page number
Mandatory per document:

- Distribution (Notification) list
- Reviewers and commentators
- Document scope (Product family, Product, Subsystem, Module as far as applicable)
- Change history
Recommended Practice:

- Short statement on frontpage stating what is expected from the addressed recipients, for example:
 - Please send comments before February 29, this document will be reviewed on that date
 - This document is authorized, changes are only applied via a change request

- See Granularity of Documentation [?] for guidelines for modularization and contents
Template Pitfalls

- Author follows template instead of considering the purpose of the document.
- Template is too complex.
- There is an unmanageable number of variants.
- Mandatory use of templates results in:
 - no innovation of templates (= no learning)
 - no common sense in deployment
 - strong dependency on templates

Recommendation:
- Enforce the procedure (*what*)
- Provide the template (*how*) as supporting means.
Summary

- Templates support (new) processes
- Use templates for layout and meta information support
- Do not use templates for documents structure or contents
- Stimulate evolution of templates, keep them alive
- Keep templates simple
- Standardize on what (process or procedure), not on how (tool and template)
- Provide (mandatory) guidelines and recommended practices
- Provide templates as a supportive choice, don’t force people to use templates
System Integration How-To

by Gerrit Muller Buskerud University College

e-mail: gaudisite@gmail.com

www.gaudisite.nl

Abstract

In this document we will discuss the full integration flow. We will discuss the goal of integration, the relation between integration and testing, what is integration and how to integrate, an approach to integration, scheduling and dealing with disruptive events, roles and responsibilities, configuration management aspects, and typical order of integration problems occurring in real life.

Distribution

This article or presentation is written as part of the Gaudi project. The Gaudi project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

January 19, 2015
status: concept
version: 0.2
Typical Concurrent Product Creation Process

1. Feasibility
2. Definition
3. System Design
4. Engineering
5. Integration & Test
6. Field Monitoring
7. Product Operational Life Cycle

Strategy

- Policy
- Requirements and Specification
- Design
- Integrate
- Test
Zooming in on Integration and Tests

- Feasibility
- Definition
- System design
- Engineering
- Integration & Test
- Field monitoring
- Product operational life cycle

Integrate: System test, alpha test, beta test, gamma test
Integration Takes Place in a Bottom-up Fashion
Transition from Previous System to New System

2 partial systems for SW testing

2 existing base systems

new base systems

adopt existing base SW

new application

SW dev system

test and refine application

existing base system

integrate and refine application

SW for new HW subsystem

test SW for new HW subsystem

new HW subsystem

test HW subsystem

existing base system

integrate subsystem

SW dev system

new application

integrate system

new HW subsystem

test SW for new HW subsystem

adopt existing base SW

new base system

test new base system

integrate HW system

integrate system

application integration

new subsystem integration

integrated system

time
Alternatives to Integrate a Subsystem Early in the Project

- **Physical reality**
- **Physical simulated**
- **Complex virtual**
- **Simple virtual**

Physical environment

- **(modified) existing subsystems**
- **(prototype) new subsystems**

Virtual environment

- **Simulated subsystems**
- **Stubs**

To-be-integrated subsystem
Stepwise Integration Approach

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Determine most critical system performance parameters.</td>
</tr>
<tr>
<td>2</td>
<td>Identify subsystems and functions involved in these parameters.</td>
</tr>
<tr>
<td>3</td>
<td>Work towards integration configurations along these chains of subsystems and functions.</td>
</tr>
<tr>
<td>4</td>
<td>Show system performance parameter as early as possible; start with showing "typical" system performance.</td>
</tr>
<tr>
<td>5</td>
<td>Show "worst-case" and "boundary" system performance.</td>
</tr>
<tr>
<td>6</td>
<td>Rework manual integration tests in steps into automated regression tests.</td>
</tr>
<tr>
<td>7</td>
<td>Monitor regression results with human-driven analysis.</td>
</tr>
<tr>
<td>8</td>
<td>Integrate the chains: show system performance of different parameters simultaneously on the same system.</td>
</tr>
</tbody>
</table>
Order of Functions Required for the IQ of a Waferstepper

correlate stage source

correlate stage destination

calibrate x,y measurement

measure x,y source

measure x,y destination

control x,y destination

position x,y source

position x,y destination

measure alignment signal

adjust light source

adjust lens

align source destination

focus

measure

process

expose

qualify
Roles and Responsibilities During the Integration Process

project leader
- organization
- resources
- schedule
- budget

systems architect/engineer/integrator
- system requirements
- design inputs
- test specification
- schedule rationale
- troubleshooting
- participate in test

system tester
- test
- troubleshooting
- report

logistics and administrative support
- configuration
- orders
- administration

engineers
- design
- component test
- troubleshooting
- participate in test

machine owner
- maintain test model
- support test
Configuration Management Entities

Customer Oriented Process
- Company
- Customer
- Goods flow

Product Creation Process
- Specifications
- Test models
- Technical Product Documentation (TPD)

Purchasing Process
- Orders
- Sales
- Production

Legend
- Data
- Physical entity

System Integration How-To
Gerrit Muller

version: 0.2
January 19, 2015
SINTconfigurationManagement
1. The (sub)system does not build.
2. The (sub)system does not function.
3. Interface errors.
4. The (sub)system is too slow.
5. Problems with the main performance parameter, such as image quality.
6. The (sub)system is not reliable.
Make a design for the documentation structure of the case, take into account a.o.:

- target audience per documentation module
- lifecycle
- author
- size (budget)

Present (max 1 flip) the proposed documentation structure and the rationale.
Documentation

Requirements Entire Documentation

Accessibility for the readers
Low threshold for the readers
Low threshold for the authors
Completeness
Consistency
Maintainability
Scalability
Evolvability
Process to ensure the quality of the information

Requirements per Document

High cohesion (within the unit)
Low coupling (outside of the unit)
Accessibility for the readers
Low threshold for the reader
Low threshold for the author
Manageable steps to create, review, and change
Clear responsibilities
Clear position and relation with the context
Well-defined status of the information
Timely availability

Decompose Large Documents

Recursive Decomposition

Summary Module Supporting Processes

version: 0.2
January 19, 2015
Maximize Payload

- front page
 - title
 - identification
 - author
 - distribution
 - status
 - review
- history
- diagrams
- tables
- contents
- meta information

1. aap
2. noot
3. mies
- lists
- and ca 50% text

Light Weight Review

- the author is responsible for contents and organization of the flow (consults and review)
- draft
- consultation & review
- final review = final check contents
- concept
- authorization = check process
- authorized

- specification specific Change Control Board
 - 4 peoples/roles:
 - 1 producer
 - 1 consumer
 - 1 context
 - 1 independent
- criteria for reviewers:
 - know how
 - critical
 - sufficient time

A3s

- multiple related views
- quantifications
- one topic per A3
- capture "hot" topics
- digestable (size limitation)
- practical
- close to stakeholder experience

Light Weight Review

- wide group of people, with an active concern or an expected contribution;
- many iterations
- multiple media:
 + meetings,
 + on paper
 + informal et cetera

by "lowest" operational manager: project leader, subsystem PL, ...

Light Weight Review

summary Module Supporting Processes
48 Gerrit Muller

version: 0.2
January 19, 2015
Systems Integration

Integration Starts at Feasibility

Alternatives for Early Integration

Bottom-up

Propagation of Configuration Issues

Summary Module Supporting Processes