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Abstract

What is System Performance? Why should a software engineer have knowledge of
the other parts of the system, such as the Hardware, the Operating System and the
Middleware? The applications that he/she writes are self-contained, so how can
other parts have any influence? This introduction sketches the problem and shows
that at least a high level understanding of the system is very useful in order to get
optimal performance.
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1 Introduction

This article discusses a typical example of a performance problem during the creation
of an additional function in an existing system context. We will use this example
to formulate a problem statement. The problem statement is then used to identify
ingredients to address the problem.

2 What if ...

Let’s assume that the application asks for the display of 3 ·3 images to be displayed
“instanteneously”. The author of the requirements specification wants to sharpen
this specification and asks for the expected performance of feasible solutions. For
this purpose we assume a solution, for instance an image retrieval function with
code that looks like the code in Figure 1. How do we predict or estimate the
expected performance based on this code fragment?

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images 

instanteneous
design

design

or

Figure 1: Image Retrieval Performance

If we want to estimate the performance we have to know what happens in the
system in the retrieve_image function. We may have a simple system, as shown
in Figure 2, where the retrieve_image function is part of a user interface process.
This process reads image data directly form the hard disk based store and renders
the image directly to the screen. Based on these assumptions we can estimate
the performance. This estimation will be based on the disk transfer rate and the
rendering rate.

However, the system might be slightly more complex, as shown in Figure 3.
Instead of one process we now have multiple processes involved: database, user
interface process and screen server. Process communication becomes an additional
contribution to the time needed for the image retrieval. If the process communi-
cation is image based (every call to retrieve_image triggers a database access and a
transfer to the screen server) then 2 · 9 process communications takes place. Every
process communication costs time due to overhead as well as due to copying image
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}
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Figure 2: Straight Forward Read and Display

data from one process context to another process context. Also the database access
will contribute to the total time. Database queries cost a significant amount of time.

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 3: More Process Communication

The actual performance might be further negatively impacted by the overhead
costs of the meta-information. Meta-information is the describing information of
the image, typically tens to hundreds of attributes. The amount of data of meta-
information, measured in bytes, is normally orders of magnitude smaller than the
amount of pixel data. The initial estimation ignores the cost of meta-information,
because the of amount of data is insignificant. However, the chosen implemen-
tation does have a significant impact on the cost of meta-information handling.
Figure 4 shows an example where the attributes of the meta-information are inter-
nally mapped on COM objects. The implementation causes a complete “factory”
construction for every attribute that is retrieved. The cost of such a construction
is 80µsec. With 100 attributes per image we get a total construction overhead of
9 · 100 cdot80µs = 72ms. This cost is significant, because it is in the same order
of magnitude as image transfer and rendering operations.

Figure 5 shows I/O overhead as a last example of potential hidden costs. If the
granularity of I/O transfers is rather fine, for instance based on image lines, then
the I/O overhead becomes very significant. If we assume that images are 5122, and
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta
------

---------

--------

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 4: Meta Information Realization Overhead

if we assume tI/O = 1ms, then the total overhead becomes 9 · 512 · 1ms ≈ 4.5s!

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Figure 5: I/O overhead

3 Problem Statement

In the previous section we have shown that the performance of a new function
cannot directly be derived from the code fragment belonging to this function.
The performance depends on many design and implementation choices in the SW
layers that are used. Figure 6 shows the conclusions based on the previous What if
examples.

Figure 7 shows the factors outside our new function that have impact on the
overall performance. All the layers used directly or indirectly by the function have
impact, ranging from the hardware itself, up to middleware providing services. But
also the neighboring functions that have no direct relation with our new function
have impact on our function. Finally the environment including the user have
impact on the performance.

Figure8 formulates a problem statement in terms of a challenge: How to under-
stand the performance of a function as a function of underlying layers and surrounding
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Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Figure 6: Non Functional Requirements Require System View
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Figure 7: Function in System Context

functions expressed in a manageable number of parameters? Where the size and
complexity of underlying layers and neighboring functions is large (tens, hundreds
or even thousands man-years of software).

4 Summary

We have worked through a simple example of a new application level function.
The performance of this function cannot be predicted by looking at the code of the
function itself. The underlying platform, neighboring applications and user context
all have impact on the performance of this new function. The underlying platform,
neighboring applications and user context are often large and very complex. We
propose to use models to cope with this complexity.
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Figure 8: Challenge

Summary of Introduction to Problem

Resulting System Characteristics cannot be deduced from local code.

Underlying platform, neighboring applications and user context:

have a big impact on system characteristics

are big and complex

Models require decomposition, relations and representations to analyse.

Figure 9: Summary of Problem Introduction

by Ton Kostelijk and Gerrit Muller.
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