
Introduction to System Performance Design
-

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Gerrit Muller
University of South-Eastern Norway-NISE

Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway

gaudisite@gmail.com

Abstract

What is System Performance? Why should a software engineer have knowledge of
the other parts of the system, such as the Hardware, the Operating System and the
Middleware? The applications that he/she writes are self-contained, so how can
other parts have any influence? This introduction sketches the problem and shows
that at least a high level understanding of the system is very useful in order to get
optimal performance.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve
by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is
published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the
document remains complete and unchanged.

All Gaudí documents are available at:
http://www.gaudisite.nl/

version: 0.5 status: preliminary draft June 21, 2020

1 Introduction

This article discusses a typical example of a performance problem during the creation
of an additional function in an existing system context. We will use this example
to formulate a problem statement. The problem statement is then used to identify
ingredients to address the problem.

2 What if ...

Let’s assume that the application asks for the display of 3 ·3 images to be displayed
“instanteneously”. The author of the requirements specification wants to sharpen
this specification and asks for the expected performance of feasible solutions. For
this purpose we assume a solution, for instance an image retrieval function with
code that looks like the code in Figure 1. How do we predict or estimate the
expected performance based on this code fragment?

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

alternative application code:

event 3*3 -> show screen 3*3

<screen 3*3>

<row 1>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>
<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 1>

<row 2>

<col 1><image 1,1></col 1>

<col 2><image 1,2></col 2>

<col 3><image 1,3></col 3>

</row 3>

</screen 3*3>

application need:

at event 3*3 show 3*3 images

instanteneous
design

design

or

Figure 1: Image Retrieval Performance

If we want to estimate the performance we have to know what happens in the
system in the retrieve_image function. We may have a simple system, as shown
in Figure 2, where the retrieve_image function is part of a user interface process.
This process reads image data directly form the hard disk based store and renders
the image directly to the screen. Based on these assumptions we can estimate
the performance. This estimation will be based on the disk transfer rate and the
rendering rate.

However, the system might be slightly more complex, as shown in Figure 3.
Instead of one process we now have multiple processes involved: database, user
interface process and screen server. Process communication becomes an additional
contribution to the time needed for the image retrieval. If the process communi-
cation is image based (every call to retrieve_image triggers a database access and a
transfer to the screen server) then 2 · 9 process communications takes place. Every
process communication costs time due to overhead as well as due to copying image

Gerrit Muller
Introduction to System Performance Design
June 21, 2020 version: 0.5

University of South-Eastern Norway-NISE

page: 1

UI process

screen

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

store

Figure 2: Straight Forward Read and Display

data from one process context to another process context. Also the database access
will contribute to the total time. Database queries cost a significant amount of time.

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 3: More Process Communication

The actual performance might be further negatively impacted by the overhead
costs of the meta-information. Meta-information is the describing information of
the image, typically tens to hundreds of attributes. The amount of data of meta-
information, measured in bytes, is normally orders of magnitude smaller than the
amount of pixel data. The initial estimation ignores the cost of meta-information,
because the of amount of data is insignificant. However, the chosen implemen-
tation does have a significant impact on the cost of meta-information handling.
Figure 4 shows an example where the attributes of the meta-information are inter-
nally mapped on COM objects. The implementation causes a complete “factory”
construction for every attribute that is retrieved. The cost of such a construction
is 80µsec. With 100 attributes per image we get a total construction overhead of
9 · 100 cdot80µs = 72ms. This cost is significant, because it is in the same order
of magnitude as image transfer and rendering operations.

Figure 5 shows I/O overhead as a last example of potential hidden costs. If the
granularity of I/O transfers is rather fine, for instance based on image lines, then
the I/O overhead becomes very significant. If we assume that images are 5122, and

Gerrit Muller
Introduction to System Performance Design
June 21, 2020 version: 0.5

University of South-Eastern Norway-NISE

page: 2

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

Meta

Image data

Attribute = 1 COM object

100 attributes / image

9 images = 900 COM objects

1 COM object = 80µs

9 images = 72 ms

Attributes

screen
server

9 *

retrieve

9 *

update

UI process

database

screen

Figure 4: Meta Information Realization Overhead

if we assume tI/O = 1ms, then the total overhead becomes 9 · 512 · 1ms ≈ 4.5s!

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

What If....

- I/O on line basis (512
2
 image)

- . . .

9 * 512 * tI/O

tI/O ~= 1ms

Figure 5: I/O overhead

3 Problem Statement

In the previous section we have shown that the performance of a new function
cannot directly be derived from the code fragment belonging to this function.
The performance depends on many design and implementation choices in the SW
layers that are used. Figure 6 shows the conclusions based on the previous What if
examples.

Figure 7 shows the factors outside our new function that have impact on the
overall performance. All the layers used directly or indirectly by the function have
impact, ranging from the hardware itself, up to middleware providing services. But
also the neighboring functions that have no direct relation with our new function
have impact on our function. Finally the environment including the user have
impact on the performance.

Figure8 formulates a problem statement in terms of a challenge: How to under-
stand the performance of a function as a function of underlying layers and surrounding

Gerrit Muller
Introduction to System Performance Design
June 21, 2020 version: 0.5

University of South-Eastern Norway-NISE

page: 3

Sample application code:

for x = 1 to 3 {

for y = 1 to 3 {

retrieve_image(x,y)

}

}

can be:

fast, but very local

slow, but very generic

slow, but very robust

fast and robust

...

The emerging properties (behavior, performance)

cannot be seen from the code itself!

Underlying platform and neighbouring functions

determine emerging properties mostly.

Figure 6: Non Functional Requirements Require System View

usage context

HW HW HW

OS OS OS

MW MW MW MW

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

Functions &

Services

Middleware

Operating systems

Hardware

performance and behavior of a function

depend on realizations of used layers,

functions in the same context,

and the usage context

Figure 7: Function in System Context

functions expressed in a manageable number of parameters? Where the size and
complexity of underlying layers and neighboring functions is large (tens, hundreds
or even thousands man-years of software).

4 Summary

We have worked through a simple example of a new application level function.
The performance of this function cannot be predicted by looking at the code of the
function itself. The underlying platform, neighboring applications and user context
all have impact on the performance of this new function. The underlying platform,
neighboring applications and user context are often large and very complex. We
propose to use models to cope with this complexity.

5 Acknowledgements

The diagrams are a joined effort of Roland Mathijssen, Teun Hendriks and Gerrit
Muller. Most of the material is based on material from the EXARCH course created

Gerrit Muller
Introduction to System Performance Design
June 21, 2020 version: 0.5

University of South-Eastern Norway-NISE

page: 4

HW HW HW

OS OS OS

MW MW MW MW

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

F

&

S

Functions & Services

Middleware

Operating systems

Hardware

Performance = Function (F&S, other F&S, MW, OS, HW)

MW, OS, HW >> 100 Manyear : very complex

Challenge: How to understand MW, OS, HW

with only a few parameters

Figure 8: Challenge

Summary of Introduction to Problem

Resulting System Characteristics cannot be deduced from local code.

Underlying platform, neighboring applications and user context:

have a big impact on system characteristics

are big and complex

Models require decomposition, relations and representations to analyse.

Figure 9: Summary of Problem Introduction

by Ton Kostelijk and Gerrit Muller.

References

[1] Gerrit Muller. The system architecture homepage. http://www.
gaudisite.nl/index.html, 1999.

History
Version: 0.5, date: December 5, 2006 changed by: Gerrit Muller

• added application question to introduction of image retrieval performance
• removed slides with terminology, and removed section “Ingredients”

Version: 0.4, date: November 24, 2006 changed by: Gerrit Muller
• created article version
• changed logo

Version: 0.3, date: November 17, 2006 changed by: Gerrit Muller
• updated What If slides
• added Slide Title “System Performance Design: prerequisite information items”

Version: 0.2, date: November 10, 2006 changed by: Gerrit Muller

Gerrit Muller
Introduction to System Performance Design
June 21, 2020 version: 0.5

University of South-Eastern Norway-NISE

page: 5

http://www.gaudisite.nl/index.html
http://www.gaudisite.nl/index.html

• added slides to connect what if to problem statement
Version: 0.1, date: June 12, 2006 changed by: Gerrit Muller

• relayout and reordering
Version: 0, date: February 8, 2006 changed by: Gerrit Muller

• Created, no changelog yet

Gerrit Muller
Introduction to System Performance Design
June 21, 2020 version: 0.5

University of South-Eastern Norway-NISE

page: 6

	Introduction
	What if ...
	Problem Statement
	Summary
	Acknowledgements

