Abstract
We have been assisting in applying Systems Engineering techniques and methods in a small (tens of persons) start-up company in the semiconductor process and equipment market. We report our observations in this start-up company with an innovative product operating in a dynamic environment. Start-up companies in general explore new applications or new technologies: an environment full of unknowns, uncertainties and other surprises. In the specific case of semiconductor process and equipment the system is highly multi-disciplinary, amongst others: high precision mechanical, control, optics, chemical, signal processing, and power electronics.
1. SE research

2. Start-up at Kista

3. System Modeling

4. Evaluation

Note: Original diagram was annotated with actual performance figures for confidentiality reasons; these numbers have been removed.
Industry as Laboratory

- source of inspiration
- application playground
- industry

challenging problems
apply new engineering methods
research
hypothesis
improve
evaluate
observe results
Industry as Laboratory (2)

Kongsberg Industry Domains

- SubSea
- Defence
- Manufacturing
- Maritime

intended dissemination and research partners

multi-domain research and expertise

Reliability /Robustness in harsh environments

Innovation /Responsiveness for change

generalization and consolidation to facilitate use in other domains

single domain research focus on industrial problem
Modeling Recommendations as Applied

principles
- use feedback
- work incremental
- work evolutionary
- be explicit
- make issues tangible

objectives
- support communication
- facilitate reasoning
- support decision making
- create
- maintain
- understanding
- insight
- overview

recommendations
- Time-box
- Iterate
- Quantify early
- Measure and validate
- Multiple levels of abstraction
- (Simple) mathematical models
- Analysis of accuracy and credibility
- Multi-view
- System and its context
- Visualize

translate into
help to achieve
translate into...
1. SE research

2. Start-up at Kista

3. System Modeling

4. Evaluation

note: original diagram was annotated with actual performance figures for confidentiality reasons these numbers have been removed
The Copper Printer

courtesy Replisaurus
www.replisaurus.com
Example of printed copper structures

courtesy Replisaurus
www.replisaurus.com
ECPR technology replaces 6 process steps by 1 step

courtesy Replisaurus
www.replisaurus.com

courtesy Replisaurus
www.replisaurus.com
1. SE research

2. Start-up at Kista

3. System Modeling

4. Evaluation

Note: original diagram was annotated with actual performance figures for confidentiality reasons these numbers have been removed.
Overview of the different scopes
Customer key driver graph

- Pattern quality
 - Pattern resolution
 - Accuracy overlay
 - X-section control
 - Reliability
 - Throughput
 - Integral costs

- Design enabling
 - E.g. CD, separation
 - Early delivery vs volume production

- Cost per layer

- Environmental impact
 - Contamination and climate
 - Uptime
 - High MTBF
 - System cost
 - Operational costs
 - Consumables waste

- Electric power, clean water, ete,
 - N2, air, disposal water, air, ...

Partial graph: many nodes and connections are not shown.
Process flow at fab level, from inspection until testing

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Throughput in Minutes</th>
<th>Wafer</th>
<th>FOUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. seed sputter</td>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3. Cu print</td>
<td>2</td>
<td>50</td>
<td>target spec</td>
</tr>
<tr>
<td>4. seed etch</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5. coat/develop dielectrics</td>
<td>3..4</td>
<td>50</td>
<td>75..100??</td>
</tr>
<tr>
<td>6. exposure or CMP for polymer vias</td>
<td>1..2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>7. E-test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.</td>
<td>Loading Master & substrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Close doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Align</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Move to proximity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Process incl. rinse & dry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Move substrate unloading position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Open doors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Unloading Master & substrate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formula of printer throughput time

1. Close doors
2. Align t_{align}
3. Move to proximity
4. Process t_{chamber}
5. Move substrate unloading position
6. Open doors

$t_{\text{prepare}} = t_{\text{close doors}} + t_{\text{move to proximity}}$

$t_{\text{print}} = t_{\text{prepare}} + t_{\text{p,align}} + t_{\text{chamber (thickness)}} + t_{\text{p,finalize}}$

$t_{\text{finalize}} = t_{\text{move to unload}} + t_{\text{open doors}}$

$t_{\text{print}} = t_{\text{p,overhead}} + C_{\text{transfer}} \times \text{thickness}$

note: original diagram was annotated with actual performance figures for confidentiality reasons these numbers have been removed
Optical path to measure marker position

measurement accuracy determines required resolution

DoF

#pixels \approx 5M

pixel resolution versus maximum Field of View

read-out and processing time

optical resolution

magnification

displacement determines required Field of View

DoF
1. SE research

2. Start-up at Kista

3. System Modeling

4. Evaluation

Note: original diagram was annotated with actual performance figures for confidentiality reasons these numbers have been removed.
Systems Engineering: responsible for customer key drivers and key performance parameters of system.
Levels of Abstraction

- Static system definition
- Multidisciplinary design
- System requirements

Number of details: 10^0, 10^1, 10^2, 10^3, 10^4, 10^5, 10^6, 10^7
Lifting Engineers to System Concerns

Number of details

10^0
10^1
10^2
10^3
10^4
10^5
10^6
10^7

100
10
1

Stretch
Senior engineer
Engineer

System architect

Systems Engineering and Modeling at Start-Up Company
Gerrit Muller

version: 0
March 6, 2013
RATWmentalDynamicRange
Systems Engineering at Start-Up companies is applicable

customization is required to adapt to:

- company size
- market and technology maturity

system models help to "lift" engineers to system level concerns
Application of *theory in practice*

1. SE research

2. Start-up at Kista

3. System Modeling

4. Evaluation

is required for learning and validation