Abstract
Philips Research is looking for ways to improve the software productivity. The business rationale for this research are the needs of semiconductor customers, the creators of consumer appliances. Technological developments, such as miniaturization and convergence have a strong impact on the form, function and content of consumer appliances. The appliance makers are struggling with the consequences, especially with the exponential increasing SW effort. The customer and the semiconductor viewpoint are shown. Strategic questions for semiconductors are identified and discussed, such as the need for architecture, legacy and scoping.

Distribution
This article or presentation is written as part of the Gaudí project. The Gaudí project philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an open creation process. This document is published as intermediate or nearly mature version to get feedback. Further distribution is allowed as long as the document remains complete and unchanged.

All Gaudi documents are available at:
http://www.gaudisite.nl/
1 Introduction

Philips Research is exploring ways to increase the software productivity for consumer appliances, see figure 1 which summarizes the research goals of the software productivity and component research.

Figure 1: Software productivity and components research goals

The business rationale of this research is that creators of consumer appliances are struggling with the exploding amount of software needed in these appliances. As customers of semiconductor companies they are looking for ways to cope with the software. See section 2 for a description of the customer viewpoint.

One of the dominant solution directions is buying software from third parties, such as the suppliers of the hardware. For semiconductor companies it is no longer sufficient to sell hardware only, a system solution is being asked for. See section 3
2 The customers problem

Figure 2: Convergence results in more integration and diversity

Figure 3: Value chain
Figure 4: Exploring problem space and solution ingredients

Figure 5: Dominant customer concerns
direct product costs mostly determined by hardware

how about software license costs?

development costs: software becomes more expensive than hardware

time to market: software is limiting factor

software often synonymous with integration

product value mostly determined by software

SW is integrating technology
SW implements functional behavior

Figure 6: Trends in hardware and software
Figure 7: Changes in semiconductor country in the last decade

How to protect customers SW investments?

How to enable SW application reuse across domain boundaries?

Which software architecture? which hardware architecture

Which software to make? which hardware IP

How and with whom to partner? Thomson, TI, Intel, Samsung, ...

How to do all of this fast enough?

Figure 8: Strategic questions for Semiconductor company
4 Which architecture?

Figure 9: Simplistic Architecting: Digital TV

Figure 10: Available Code Assets
Architectural mismatch:
wrappers, translators, conflicting controls

additional code and complexity, no added value

Poor performance; additional resource usage

Problems Architecture Reuse non problem

Figure 11: Merge problems

Figure 12: Evolution of functionality
Figure 13: Existing SW stacks

Figure 14: But there are much more domains and stacks
Figure 15: Ideal homogeneous situation?

Figure 16: Today’s reality?

Figure 17: Achievable solution?
5 Which software to make

Figure 18: Core, key or base technology?

Figure 19: Streaming: one of Philips’ core strengths
consolidation standardization
domain
specific
applications
domain
specific
infrastructure
generic
infrastructure
customer
specific
year x
year x+4
year x+2
enabling, supporting?

Figure 20: Our territory?
6 Summary

Figure 21: Summary

References


History
Version: 0, date: April 8, 2002 changed by: Gerrit Muller
- Created, no changelog yet