Abstract

The fundamental concepts and approach system partitioning are explained. We look at physical decomposition and functional decomposition in relation to supply chain, lifecycle support, project management, and system specification and design.
Parts, Dynamics, Characteristics

- **characteristics**
 - prime interest of customer

- **dynamics**
 - functionality

- **interact**

- **parts**
 - prime interest of organization

- **results in**

- **prime system responsibility**
System Partitioning Fundamentals

3 Gerrit Muller
Example Physical Decomposition

1. Fluidic subsystem
 2. Chamber
 3. Bottom chuck
 4. Process power supply
 5. Electronics infrastructure

6. Base frame + x, y, θ stage
 7. ZUBA
 8. Optics stage
 9. Vision
 10. Covers and hatches
 11. Cabling
 12. Ventilation air flow
 13. Contamination evacuation
 14. Machine control
 15. "Remote" electronics rack

back side view
front side view
integrating

System Partitioning Fundamentals
Gerrit Muller
version: 0.2
July 24, 2014
REPLI subsystemsAll
Partitioning is Applied Recursively

System Partitioning Fundamentals
5 Gerrit Muller

version: 0.2
July 24, 2014
SPFrecursion
the part is cohesive

functionality and technology belongs together

the coupling with other parts is minimal

minimize interfaces

the part is selfsustained for production and qualification

can be in conflict with cost or space requirements

clear ownership of part

e.g. one department or supplier
How much self-sustained?

How self sustained should a part be?
trade-off:

- cost/speed/space optimization
- logistics/lifecycle/production flexibility
- clarity
Decoupling via Interfaces

- part e.g. pipe
- part e.g. pressure and flow regulator
- part e.g. pipe
- control interface e.g. CAN
- mechanical mounting interface
- other part with same interfaces can replace original
- hydrocarbon interface
- power interface

System Partitioning Fundamentals
Gerrit Muller
version: 0.2
July 24, 2014
SPFInterfaceDecoupling
System is composed

by using standard interfaces

limited catalogue of variants (e.g. cost performance points)
System Creation

- System Partitioning Fundamentals

version: 0.2
July 24, 2014
SPFsystemCreation

Gerrit Muller

11

System Partitioning Fundamentals

- System Creation
 - Engineering
 - Design
 - Architecture
 - Guidelines
 - Top-level design rationale
 - Functions
 - Interfaces
 - Partitioning
 - Engineering
 - Documentation
 - System and parts data procedures
 - Quality assurance
 - Installation
 - Production
 - Support
 - Procurement
Simplistic Functional SubSea Example

- Prevent blow-outs
- Regulate flow and pressure
- Combine multiple streams
- Separate gas, oil, water, sand
- Increase well pressure
- Transport to top-side

System Partitioning Fundamentals
12 Gerrit Muller
version: 0.2
July 24, 2014
SPFfunctionalExample
How does the system work and operate?

Functions describe *what* rather than *how*.

Functions are *verbs*.

Input-Process-Output paradigm.

Multiple kinds of flows:

- physical (e.g. hydrocarbons)
- information (e.g. measurements)
- control

At lower level one part \(\sim\) one function

- pump pumps, compressor compresses, controller controls

At higher level functions are complex interplay of physical parts

- e.g. regulating constant flow, pressure and temperature
Quantification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>2.4m * 0.7m * 1.3m</td>
</tr>
<tr>
<td>Weight</td>
<td>1450 Kg</td>
</tr>
<tr>
<td>Cost</td>
<td>30000 NoK</td>
</tr>
<tr>
<td>Reliability</td>
<td>MTBF 4000 hr</td>
</tr>
<tr>
<td>Throughput</td>
<td>3000 l/hr</td>
</tr>
<tr>
<td>Response time</td>
<td>0.1 s</td>
</tr>
<tr>
<td>Accuracy</td>
<td>+/- 0.1%</td>
</tr>
</tbody>
</table>

Many characteristics of a system, function or part can be quantified. Note that quantities have unit.
How about the **<characteristic>** of the **<component>** when performing **<function>**?

What is the **accuracy** of the **fuse** when **printing**?

Example from a high volume printer.
Example Technical Budget

- **process overlay 80 nm**
 - matched machine 60 nm
 - single machine 30 nm
 - process dependency sensor 5 nm
 - matching accuracy 5 nm

- **lens matching 25 nm**
 - stage overlay 12 nm
 - stage grid accuracy 5 nm
 - metrology stability 5 nm

- **global alignment accuracy 6 nm**
 - stage Al. pos. meas. accuracy 4 nm
 - alignment repro 5 nm

- **off axis pos. meas. accuracy 4 nm**
 - off axis Sensor repro 3 nm

- **system adjustment accuracy 2 nm**
 - interferometer stability 1 nm

- **frame stability 2.5 nm**
 - tracking error WS 2 nm
 - tracking error X, Y 2.5 nm
 - tracking error phi 75 nrad

- **stage pos. meas. accuracy 7 nm**
 - tracking error RS 1 nm
Example of A3 overview

A3 architecture overview of the Metal Printer
(all numbers have been removed for competitive sensitivity)

back-end factory: systems and process model

metal printing cell: systems and performance model

metal printing time-line

metal printing cell: functional flow

metal printer back side
metal printer front side

metal printer subsystems, functions, and cycle time model

System Partitioning Fundamentals
Gerrit Muller

July 24, 2014

version: 0.2

LEANoverviewA3