Case Study: Medical Imaging; From Toolbox to Product to Platform

by Gerrit Muller University of South-Eastern Norway-NISE

e-mail: gaudisite@gmail.com
www.gaudisite.nl

Abstract

Medical Imaging was an early large scale Object Oriented product. Originally intended to become a re-useable set of toolboxes, it evolved in a family of medical workstations and servers. This article describes the evolution from different viewpoints, to serve as background material for a number of case studies of the Gaudí project.
Generic drivers of Radiology Departments

- Diagnosis
 - Image quality
 - Relaxed patient
 - ease of use
 - patient handling
 - universality
 - integrated information flow
 - minimal film cost
 - up time

- Department Efficiency
 - Compliant with Standards and Regulations
 - minimal evasive

- Safety
 - automation
 - patient accessibility
 - patient entry, exit
 - dose reduction

Case Study: Medical Imaging; From Toolbox to Product to Platform
3
Gerrit Muller
Phases of Medical Imaging

• 1987-1991 Advanced Development ("Common Viewing"), result: Basic Application plus toolboxes
• 1991-1992 Development of 1st product: Medical Imaging R/F
• 1992-1994 Parallel Development of 2nd product: Medical Imaging CT/MR
• 1994-1997 Family Development
• 1997-2000 Transformation in re-useable components
Technology innovations by Common Viewing

- Standard UNIX based workstation
- Full SW implementation, more flexible
- Object Oriented design and implementation (Objective-C)
- Graphical User Interface, with windows, mouse et cetera
- Call back scheduling, fine-grained notification
- Data base engine, fast, reliable and robust
- Extensive set of toolboxes
- Property based configuration
- Multiple coordinate spaces
Idealized layers september 1991

SunOS, SunView

Basic Application

Image Gfx UI DB

Standard Sun workstation

Case Study: Medical Imaging; From Toolbox to Product to Platform
X-ray rooms from examination to reading around 1990

Examination Room Control Room

Corridor or closet

Examination Room Control Room

Reading Room
X-ray rooms with Medical Imaging applied as printserver

Examination Room

Control Room

Corridor or closet

X-ray source

detector

printer

Reading Room

light box
Comparison *screen copy vs optimized film*

old: screen copy

new: SW formatting

20 to 50% less film needed
Case Study: Medical Imaging; From Toolbox to Product to Platform

version: 0.4
September 6, 2020

Idealized layers september 1992

<table>
<thead>
<tr>
<th>Start up</th>
<th>Install</th>
<th>Config</th>
<th>SW keys</th>
<th>service</th>
<th>dev. tools</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Spool</th>
<th>HCU</th>
<th>Store</th>
<th>Image</th>
<th>Gfx</th>
<th>UI</th>
<th>DB</th>
<th>Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC driver</td>
<td>HC driver</td>
<td>DOR driver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PMS-net in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RC interf</th>
<th>HC interf</th>
<th>DOR</th>
<th>Standard IPX workstation</th>
<th>Desk, cabinets, cables, etc.</th>
</tr>
</thead>
</table>

| DSI | 3M | RC |

Medical Imaging R/F

- **Print**
- **Store**
- **View**
- **Cluster**

NIX

SunOS

Spool

HCU

Store

Image

Gfx

UI

DB

PMS-net in

PMS-net out

Spool

HCU

Store

Image

Gfx

UI

DB

PMS-net in

PMS-net out

RC driver

HC driver

DOR driver

RC interf

HC interf

DOR

Standard IPX workstation

Desk, cabinets, cables, etc.

DSI

3M

RC
Example Multi Planar Reconstruction

oblique slices

curved slice
Example CT/MR department
Differences between modality images

<table>
<thead>
<tr>
<th></th>
<th>X-ray</th>
<th>CT</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>image</td>
<td>projection</td>
<td>slice</td>
<td>slice</td>
</tr>
<tr>
<td>structure</td>
<td>single image</td>
<td>stack</td>
<td>stack</td>
</tr>
<tr>
<td></td>
<td>or time series</td>
<td>or volume</td>
<td>or more complex</td>
</tr>
<tr>
<td>greylevel mapping</td>
<td>contrast</td>
<td>window width</td>
<td>window width</td>
</tr>
<tr>
<td></td>
<td>brightness</td>
<td>window level</td>
<td>window level</td>
</tr>
<tr>
<td>resolution</td>
<td>1024^2</td>
<td>512^2</td>
<td>256^2</td>
</tr>
<tr>
<td>contrast noise ratio</td>
<td>10 bit</td>
<td>12 bit</td>
<td>8 bit</td>
</tr>
<tr>
<td>value</td>
<td>absolute</td>
<td>acquisition dependent</td>
<td>acquisition dependent</td>
</tr>
</tbody>
</table>
Specification Differences

- viewing and print preparation
 - navigation support
 - multi-image view
 - greylevel control
- specialized clinical functions
 - vascular and cardio analysis (X-ray)
 - dental (CT)
- print protocols
- information model
Medical Imaging Competitive Positioning

- Workflow value
 - Medical Imaging Review
 - GE Siemens workstations
 - Medical Imaging R/F and CT/MR
 - PACS products

- Clinical or modality value
Radiology Department
<table>
<thead>
<tr>
<th>Back-ends</th>
<th>Image Guided Surgery</th>
<th>Review</th>
<th>Rad</th>
<th>CT/MR</th>
<th>XRay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized applications (Dental, bolus chase, cardio analysis, etcetera)</td>
<td>Interfacing RIS, etcetera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>CT</td>
<td>RF</td>
<td>Vascular</td>
<td>Cardio</td>
<td>PCR</td>
</tr>
<tr>
<td>Compose</td>
<td>Print</td>
<td>Store</td>
<td>MPR</td>
<td>View</td>
<td>Export</td>
</tr>
<tr>
<td>Spool</td>
<td>HCU</td>
<td>Store</td>
<td>Image</td>
<td>Gfx</td>
<td>UI</td>
</tr>
<tr>
<td>RC driver</td>
<td>HC driver</td>
<td>DOR driver</td>
<td>NIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Sparcstation 5 workstation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC dials interf</td>
<td>HC interf</td>
<td>DOR</td>
<td>Desk, cabinets, cables, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC dials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new HCU</td>
<td>MR</td>
<td>CT</td>
<td>DSI</td>
<td>DCAS</td>
<td>PCR</td>
</tr>
</tbody>
</table>
System Level Documents: Root

- List of system level document lists
- System level requirements, specification and design documents
- System aspect documents
- Feasibility reports
• Cluster, interoperability documents
• Functional Specifications X-ray
• Functional Specifications CT/MR
• Application SW design
• System Software design
• Hardware documents
Documents

- Product Structure
- System Engineering requirements
- Design overview
- Hazard analysis
- Verification specification X-ray
- Verification specification CT/MR
Aspect Documents

- Cluster design
- HW Configuration
- CPU resource usage
- Disk resource usage
- Memory resource usage
- Requirements system monitor
- Safety
- Security
- SW process structure
- Testability and Service tools
- Installation, Configuration and Start-up design
- CT/MR image quality
- R/F image quality
- CT/MR typical load
- R/F typical load
Example Memory Budget

<table>
<thead>
<tr>
<th>budget in MBytes</th>
<th>X-ray</th>
<th>CT/MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>non bulk data</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>bulk data</td>
<td>36</td>
<td>88</td>
</tr>
<tr>
<td>Unix</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>total used</td>
<td>77</td>
<td>133</td>
</tr>
<tr>
<td>physical memory</td>
<td>64</td>
<td>128</td>
</tr>
</tbody>
</table>