The System Architecture Process

by Gerrit Muller USN-SE
 e-mail: gaudisite@gmail.com
 www.gaudisite.nl

Abstract

The System Architecture Process is positioned in the business context. This process bridges the gap between the Policy and Planning Process and the Product Creation Process.

The purpose of the System Architecture Process is to provide the Integral Technical overview and consistency, and to maintain the integrity over time. Subjective characteristics as elegance and simplicity are key elements of a good architecture.

The scope of the system architecture process is illustrated by showing 5 views used in a reference architecture, ranging from Customer Business to Realization.
System Architecting Process in Business Context

1. **Customer-Oriented Process**
 - Customer Roadmap
 - Sales
 - Logistics
 - Production
 - Service
 - Presales

2. **Product Creation Process**
 - People
 - Process
 - Technology Management Process

3. **Business Drivers**
 - Customer Roadmap
 - Technology, Process, and People Roadmaps
 - Budgets
 - Plans
 - Vision
 - Policy and Planning Process

4. **Reality Check**
 - Needs and Feedback
 - Technical Product Documentation
 - Product Related Processes

5. **Customer-Oriented Process**
 - Customer

6. **Systems Architecting Process**
 - Context, Vision
 - People, Technology, and Process

7. **People, Process, and Technology Management Process**

The System Architecture Process

version: 2.3
March 27, 2021
SAPprocessSimplified
Map of System Architecting Process and Neighborhood

The System Architecture Process
Gerrit Muller

version: 2.3
March 27, 2021
SAPprocessMap
System Architecting Relation between PPP and PCP

Context: Product Portfolio, Time

Vision, Policy, Intention

Practical Knowledge

Feedback from Reality

Policy and Planning Process

Product Creation Process
System Architecting Key Issues

key words
- balance
- consistency
- integrity
- simplicity
- elegance
- stakeholder satisfaction

balancing acts
- External ↔ internal requirements
- Short term needs ↔ long term interests
- Efforts ↔ risks from requirements to verification
- Mutual influence of detailed designs
- Value ↔ costs

example trade-offs
- performance ↔ synergy
 - functionality ↔ specific solution
 - qualities