
Automation Processes for Efficient Verification of Complex
Systems: an Empirical Case Study

Corresponding Author
Rune André Haugen

University of South-Eastern Norway
rune.a.haugen@usn.no

Nils-Olav Skeie
University of South-Eastern Norway

nils-olav.skeie@usn.no

Gerrit Muller
University of South-Eastern Norway

gerrit.muller@usn.no

Abstract. This paper investigated the effect of automation processes in an industrial
company engineering complex cyber-physical systems. The authors used industry-as-
laboratory as research method, exploring an ongoing development project. The automation
efforts focused on four areas, being 1) test setup, 2) test execution, 3) test result analysis,
and 4) documentation. All four areas showed promising results on increased effectiveness
and/or efficiency. Especially automation of test result analysis will help the industrial
company, KONGSBERG, reduce their main bottleneck in the test process, as well as reduce
the risk of costly project delays. An automated system integration test process, facilitating
iterative regression testing, will leverage the efficiency of the verification test process.

Keywords — Automation, Complex Systems, Integration, Testing, Verification

Introduction

This paper contains data and evaluation of the automation processes conducted in a
development project in KONGSBERG over a five-year period (2018-2023) for a complex
cyber-physical system. The authors have extracted test data from the company test
database, giving us high confidence in this data.

Background

The company has to execute projects faster and in parallel to cope with its future market
situation. Availability of human resources is a challenge. The company needs to increase
test coverage for all projects compared to today’s situation. Further, improve effectiveness
and efficiency of test result analyzing to cope with the amount of tests in due time. Test
result documentation must be on time for all relevant testing, on different formats (pickle,
markdown, and JSON) for further automatic processing, and on a pdf format for easy
sharing both internally and externally. The company needs to document all test results, not
only the mandatory part for customer delivery.

mailto:rune.a.haugen@usn.no
mailto:nils-olav.skeie@usn.no
mailto:gerrit.muller@usn.no

KONGSBERG is a large company cluster spanning multiple industry fields with its
headquarter in Kongsberg and many other smaller sites located around the world. The
company was founded in 1814 and has approximately 13 000 employees as of 2024. The
KONGSBERG group consists of four companies:1

• Kongsberg Defence and Aerospace

• Kongsberg Digital

• Kongsberg Discovery

• Kongsberg Maritime

The large development project under investigation in this study started about thirty years
ago and has undergone several upgrades. From the first commercial survey, KONGSBERG
has been at the forefront of autonomy, with the system being capable of uninterrupted
operations for its entire mission.1

Research questions and design

We pose the following research question (RQ) and sub-research questions (SRQ) for this
case study:

RQ: How can automation of test processes improve the verification of complex systems?

SRQ1: How can automation of test setup improve the verification of complex systems?

SRQ2: How can automation of test execution improve the verification of complex systems?

SRQ3: How can automation of test result analysis improve the verification of complex
systems?

SRQ4: How can automation of test document generation improve the verification of
complex systems?

SRQ5: Can the use of automated test processes for complex systems make a positive impact
on usage of subject matter expert hours?

We have illustrated our research design in Figure 1. Haugen and Mansouri2 cover the first
part, problem exploration, and Haugen et al.3 cover the second part, literature review. Our
aim in this paper was to do a gap analysis between different project milestones before and
after implementation of automation measures within four areas of interest, being 1) test
setup, 2) test execution, 3) test result analysis, and 4) documentation.

Figure 1: Research design

Contributions of the paper

The authors explored automated testing procedures in an industrial case to improve
verification of complex systems. Many organizations recognize manual testing as a

bottleneck. The authors advocate combining strengths of human expertise and machine
capabilities to optimize the effectiveness (what) and efficiency (how) of the test process.

The proposed methodology should be applicable in general for organizations developing
complex systems and having a potential for improving the human-machine task balance.
The potential value of utilizing this approach is to increase the probability of on-time
project delivery and reduce project delays.

Literature review

We searched relevant literature for potential benefits and concerns related to automation
processes. This section is based on the literature review we conducted on detection of
emergent behavior.3 We include some highlights in the following paragraphs.

Automating test execution and test result analysis can remove these two bottlenecks in the
test process, leveraging the efficiency.2,4

Utilizing metrics like Measures of Effectiveness (MoE), Measures of Performance (MoP),
and Technical Performance Measures (TPM) can give us information about the system that
could become valuable feedback to system top level design.5 Raman suggests using Machine
Learning techniques when monitoring MoE and MoP to look for changes that give or could
give raise to undesired system behavior.6-11

Several research works claim to reduce the test time used for manual testing by more than
90% by automating the test procedures that are suitable for automation.12,13 Tools for
automation with built in simulators become essential for verifying and validating behavior
logic in a reasonable amount of time.14 However, a key challenge is the need for
abstractions of the micro and macro levels, which is difficult to achieve in an automated
manner. Hence, most approaches rely on a post-mortem observation of the simulation by a
system expert.15

Case study

This is a generalized case for a complex cyber-physical system, based on a real KONGSBERG
product, as the real case we investigated contains sensitive data and that cannot be shared
outside the case company.

Test setup: We looked at automating today’s manual test setup for system integration
testing based on orthogonal arrays (OAs).16 OAs are a mechanism to increase test coverage
without proportionally increasing the number of tests. Since we want to test more of the
parameter space, we need automation. A previous case study in the company showed
promising results using OAs.17 The researchers used the Minitab tool18 to design an
experiment based on the Taguchi method.16 Then, the company transferred the experiment
data in a machine-readable format to a simulator.

Test execution: We investigated automating today’s manual tester actions, including
triggers for scenario actions. The company made manual actions machine readable, see
Table I, and implemented support for this in one of the company’s test arenas.

Table I: Example of automatic testing procedure

Action Number Action Phase Action Name Action Trigger

1 Preparation Power on Power available

2 Preparation Select position Initialization finished

3 Preparation Select profile Position selected

4 Preparation Start Start command

5 Operation Stop Stop command

Test result analysis: We researched automating today’s manual analysis. The company
scripted checks that Subject Matter Experts (SMEs) perform manually when investigating
log files for different data to compare against defined acceptance criteria, making these
checks machine executable. In this case study, we focused on a sub-set of these scripts. This
sub-set consisted of thirty out of the total one hundred system requirements. Then, the
company transformed the analysis results using a Python19 script making a format suitable
for regression analysis in Minitab.

Documentation: We examined automating today’s manual documentation process. The
company both tested and used the company developed Highly Automated Document
System (HADES). Analyzing results and generating reports are the functions of HADES.
Figure 2 shows the complete test process in a data flow diagram where the artifacts are
stored in a repository facilitating further testing, processing, analysis, and reporting.

Figure 2: Test process

A test scenario and system configuration provides input to HADES for automatic creation of
test descriptions. The test description is input to the simulator to execute tests. The test
results from the simulator are stored in a test results database, which provides input to

define system define test scenarios

execute test

analyze results

generate report

configurations test scenarios
system

requirements

test results

test outcomes

test reports

HADES for automatic analysis of test results. HADES creates the test outcome based on test
results and system requirements with acceptance criteria. HADES then uses the test
outcome from the analysis process in automatic creation of test reports. Test outcomes are
machine readable, while test reports are human readable.

Scope of research

The remainder of this paper is structured as follows: The section Methods presents
methodology used for this research paper. The section Results provides a quantified
comparison between two test campaigns; the first based on a manual test process and the
second based on an automated test process. The section Cost estimate gives a short
financial assessment in the form of SME hours. The section Discussion provides a synthesis
on the results, addressing the research questions. Finally, the section Conclusion
summarizes the paper, provides gained knowledge, defines limitations of the study, and
proposes future research.

Methods

We used the industry-as-laboratory approach within the case company.20,21 In the case
company, one of the researchers had access to the system integration test group, relevant
SMEs (testers and analysts), and historic test data. “The advantage with such an approach is
the realism introduced into the research. Practical challenges in the theoretical frameworks
can be hard to detect, unless one sees how it plays out in reality. One challenge emerging
from such an approach is the potential of noise from company-specific problems that we
cannot directly link to the research conducted.”4

The digitalization process to automate earlier manual tasks included several steps of
scripting. Python is used to develop script files for test setup transfer, test execution, test
result analysis, and test documentation. The test input and test output are stored in
separate distributed relational databases with the test input data under configuration
management in a company developed system called Chaman. The test output is accessible
from the company developed test web application. The reports created by HADES are
stored in a product document management (PDM) system, named Enovia, from Dassault
Systems.22

Results
The number of tests included approximately one hundred system level requirements with
test as verification method. These tests, the sub-system level also used for sub-system
verification. The authors have included one sub-system in this research to show data for one
typical sub-system, not for all sub-systems. We present the results from two project test
campaigns (the initial project and one later project update) in this section. System integration
testing is the first step in system level testing, where the company through a trial and error
approach ensures maturity before more formal testing. System testing is the second step in
system level testing, where the company through a test plan ensures compliance to the
system design. System interface testing is a part of system testing, focusing on testing

input/output. System verification testing is the third step in system level testing, where the
company, through a system verification plan ensures compliance to the system requirements.

Benchmark results

The benchmark results are based on manual tasks performed during a major project
milestone.

Test setup: The company prioritized testing for verifying system requirements, based on
the system verification plan. The test coverage of the system design was limited (10-30%)
considering the parameter space of interest for the system. The time to set up testing was
low (2-4 hours), only selecting and prioritizing among the described system verification
tests for system integration testing.

Test execution: See Table II for an overview of the number of tests executed- and the
duration of the system test campaign. The system test campaign we used is the functional
testing part of the Final Design Review (FDR). The company had set the system tests finished
milestone to February and the verification tests finished milestone to April. However, the
company ended up doing these serial test phases more or less in parallel to finish on time,
working double shifts to do so.

Table II: Number of tests in a test campaign

Test
period

System level testing Sub-system level testing

Integration

testing
System
testing

Verification
testing

Integration
testing

System
testing

Verification
testing

January 208 5 0 15 0 0

February 406 139 1 0 0 0

March 178 100 85 14 15 53

April 37 0 20 116 0 30

May 6 0 0 3 1 18

June 9 0 0 0 0 0

Total: 844 244 106 148 16 101

The project allowed some sub-system verification testing to finish in May, as they still had
time before the FDR milestone meeting in June. The project continued testing in June to
further increase their confidence in the delivered test reports, in case of any discussions
during the FDR milestone meeting.

A search into the company test result database revealed a maximum of 546 tests executed
in one month in a hectic period (February 2018), ref. Table II. The testers used two to four
test arenas of two types; System Integration Lab closed loop (SILc) and System Integration
Lab open loop (SILo), dependent on their availability. SILc includes close to all HW,
facilitating full operational testing. SILo includes less HW than SILc, only facilitating
preparation for operation type of testing. Another search in the company test result
database in a less hectic period (October 2019 to March 2020), revealed an average of fifty
tests executed per month.4

Table III: Errors revealed in different testing

Error type Integration testing System testing Verification testing

Configuration 0 10 0

Correlation 8 5 0

Functional 0 37 6

Interface 11 68 0

Prioritization 9 0 0

Synchronization 12 0 0

Test arena 0 36 0

Test scenario 0 60 14

Undesired deviations 15 0 0

Undesired events 11 0 0

Undesired oscillations 9 3 0

Unexpected idle states 0 23 0

Unexpected results 0 58 4

Unexpected status 0 60 1

Error type Integration testing System testing Verification testing

Total: 75 360 25

The testing was based on manual operations, being resource demanding. One full test in
SILc involves two operators sitting in the system lab for thirty minutes including pre- and
post-work, without the opportunity to do other types of work. One full test in SILo involves
the same as for SILc, but only about half the time is necessary.

Test result analysis: SMEs reported that they on average used 39% of their time for
analysis work in hectic periods, but only 4% of their time in non-hectic periods.4 This
analysis effort only covers 9% of tests executed, not considering potential overlap, leaving
91% of test data not used for analysis.4 8% of analysis conducted did reveal an issue.4

Analysts reported varying times to detect an error, but they estimated an average of two
hours. Further, they reported the time to find the causal factor to vary between weeks and
months.4 One analyst conducting analysis for fifteen hours per week during hectic periods
is then likely to detect seven to eight errors per week. Table III shows errors and numbers
that a selection of seven analysts reported during a six months integration testing period
(October 2019 to March 2020).4 In addition to these 75 reported errors, we found 385
other errors from a project team status list used by the project team to follow-up issues
during the system testing period (February and March 2018) and a verification testing
period (March and April 2018).

Documentation: The documentation part of this case study consisted of two test reports,
one at system level, and one at sub-system level. SMEs created both documents manually.
The documents held compliance status and rationale for all hundred system requirements
with test as verification method. SMEs roughly estimated the time spent creating these two
test reports to one week (37.5 hours) each.

Comparison results

The comparison results are based on automated tasks performed during three project
update increments, which we can see as regression testing.23

Test setup: The company has not tried automating the requirements-based test setup but
has tested automating test setup based on OAs. OAs and automation are independent
choices, which both will improve the company test process and the product of them even
more so. We tried using one OA to set up testing to increase the test coverage of the
parameter space of interest for the system (70-90%) and did so by selecting a suitable OA
from the Taguchi framework.16 For our example case, we used a L25 OA to fit our need. We
wanted to test six parameters at five different levels each, which gave 15 625 combinations
(entire system parameter space). However, the L25 OA provided us with sufficient test
coverage in only twenty-five tests (parameter space of interest). To set up a test execution
according to this matrix for our company test arena, we exported this OA to the simulator

and generated the twenty-five test cases from the L25 OA setting values in a simulator input
file (simulated environment data).

Test execution: The test coverage included thirty system level test cases of the one
hundred existing, plus nineteen more system level interface test cases. The company down
selected manually to avoid similar type of testing, only testing distinctly different
functionality.

Table IV: Number of tests in a regression test campaign

Test period System level testing Sub-system level testing

 System testing
Interface
testing

System testing
Interface
testing

March 11 19 13 0

April 7 0 2 0

June 12 0 0 0

Total: 30 19 15 0

See Table IV for an overview of tests executed and the period of the regression test
campaign. The company still performed the testing in the test arenas allocated for
verification, but they also did some testing in an alternate test arena built for automatic
testing. One test in the alternate test arena required one person to start the test, but
allowed this operator to do other tasks in the office while the test arena was executing the
test based on an automated procedure (machine-readable version of the earlier manual list
of actions).

Test result analysis: The company automated the information flow from the test results
database to the HADES system, removing this earlier manual step and avoiding new test
results not being analyzed. The company used HADES to analyze the test results, which they
could do for a specified set of test cases or for all test cases being part of the test report. The
time to conduct one analysis was about five seconds. Analyzing thirty interface and system
level test cases took three minutes. Table V shows forty-three errors that the company
detected during this regression test period.

Out of sixty-four system and sub-system level tests, they discovered forty-three errors. This
gives a detection rate of 0.67 errors per test. In comparison, they discovered 385 errors
during 467 system- and verification tests in the benchmark test campaign, giving a
detection rate of 0.82 errors per test. The regression test campaign based on automated
tasks has a detection rate of 0.67 errors per test when the company could expect zero,
which is a significant contribution for the automation effort. We found 25% of the errors to

originate from new functionality/interfaces (11 errors in 21 tests) while the remaining
75% came from updated functionality/interfaces (32 errors in 43 tests) previously verified.

Documentation: The company used HADES to create three test reports at system level,
covering compliance and rationale for forty-nine interface and system level test cases. The
time HADES needed for creating these three test reports were approximately 1.5 minutes
per report.

Table V: Errors revealed in different regression testing

Error type System testing Interface testing

Correlation 1 0

Functional 7 0

Interface 1 2

Test arena 7 0

Test scenario 24 1

Total: 40 3

Cost estimate

The company will have to invest money to implement and maintain the proposed
automation processes. The cost of implementing and maintaining the different automation
processes is dependent on the number of SME hours (𝑆ℎ) needed and the cost of one SME
hour (𝐶ℎ). The total number of SME hours (𝑆ℎ) for test result analysis depends on the SME
hours needed for initial scripting (𝑆ℎ𝑖𝑠), script maintenance (𝑆ℎ𝑠𝑚), and manual analysis
(𝑆ℎ𝑚𝑎), see Equation 1.

𝐶𝑜𝑠𝑡 = 𝐶ℎ ∗ 𝑆ℎ, 𝑤ℎ𝑒𝑟𝑒 𝑆ℎ = 𝑆ℎ𝑖𝑠 + 𝑆ℎ𝑠𝑚 + 𝑆ℎ𝑚𝑎 (1)

The benchmark results in our case study revealed a poor test result analysis coverage in the
system integration phase. These results correspond well with survey results from one
company in KONGSBERG, where SMEs stated they only use 4% of their time on test result
analysis.4 Further, the test result analysis coverage in the system- and verification test
phases were high, which also corresponds with the survey, stating SMEs use 39% of their
time on test result analysis.4

SMEs in the case company use about 12% of their time to create scripts for automatic
analysis and about 6% of their time on average to maintain these scripts through different

project increments. We have extracted these numbers from the case company’s time
management system. Furthermore, we assess SMEs only use about 4% of their time on test
result analysis in the system- and verification phases when automatic test result analysis is
in place. The latter, we base on an estimated 90% test analysis coverage in the system
integration phase based on automatic analysis compared to only 9% coverage previously
reported.4

Based on the above numbers, we clearly see the benefit of the company investing in the
automation process for test result analysis. For establishment of the automatic test results
analysis framework, we have a workload ratio of 3:1 compared to performing the analysis
manually. During maintenance of this framework through different project increments, we
have a workload ratio of 3:2 compared to otherwise manual efforts. Using this framework
in the system testing and verification testing phases, we have a workload ratio of 1:10
compared to manual operations. Treating these three ratios equally, we get a total ratio of
7:13 (46%) in favor of the automation process. We found the ratio to be 26:35 (26%) for
the case company project update. This assessment is further strengthened by the cost of
detecting errors late in a project development being higher than detecting errors early. A
case study from Carnegie Mellon University claims that the cost of detecting errors in the
system- and verification phase is 2-3 times higher than in the previous system integration
phase.24 Also, the systems engineering handbook claims that the cost of extracting defects
in late project testing is 500-1000 times higher than the cost in earlier testing.25

Discussion

We answer the research questions in light of the results and the cost estimate.

SRQ1: How can automation of test setup improve the verification of complex systems?

The company did a minor test related to test setup where we used a L25 Taguchi OA, which
showed promising results in supplying test data input to twenty-five tests without the need
to set up the twenty-five tests manually. The company can set up testing effectively (test the
right things) and efficiently (test the right way) through this approach, combining statistical
based experiment design and automation.

SRQ2: How can automation of test execution improve the verification of complex systems?

The company did a small-scale testing effort looking at how the company could run tests
automatically in a suitable test arena, which showed good results. The test arena conducted
the tests while the operator could do other types of work anywhere. The company can
benefit from a potential increased test coverage using the system scenario sequencer
(automated test arena), resolving the bottleneck with availability of test arenas in the
system test lab.

SRQ3: How can automation of test result analysis improve the verification of complex
systems?

The company did a large-scale test of automated test result analysis scripts, which has
proven to be both beneficial and challenging. The company spent a significant amount of
time creating these scripts, but the potential gain is ever growing as we iterate and do
regression testing. However, we have seen a weakness in maintainability of these scripts as
we apply changes to the system interfaces. The company must update the scripts manually
for them to still work as intended. The company has a huge potential to increase the
analysis coverage through use of scripts and HADES, resolving the main bottleneck of
available SMEs for manual analysis. We see the importance of regression testing in the
comparison test campaign, where 75% of the errors came from functionality already
verified in the benchmark test campaign.

SRQ4: How can automation of test document generation improve the verification of
complex systems?

The company has used HADES in its effort to automate analysis and documentation. In this
case, we saw that the HADES system is helpful in significantly reducing the time for
documentation related to testing. The company was able to produce both test descriptions
and test reports during a one-month test campaign, which they would never have been able
to do previously. Where HADES uses 1.5 minutes to generate a document automatically, a
SME uses about 37.5 hours to do the same manually. The time to manually create one test
description prior to testing and one test report after testing consumes two weeks, which
only leaves two weeks for testing in a one-month test campaign. However, the review
process is the same whether the documents are automatically or manually generated.
Typically, a review process takes twelve days (two days to prepare the peer review, two
days to conduct the peer review, one week to update the document, and one day to release
the document through a formal review).

SRQ5: Can the use of automated test processes for complex systems make a positive impact
on usage of subject matter expert hours?

The implementation of automated test processes and further maintenance of these will
require a significant amount of SME hours initially and throughout the project
development. However, the amount of SME hours used in the final stages of the project
seems to be reduced more than the investment cost. Based on a previous survey in a
company in KONGSBERG4 and data from the case company’s time management system, we
clearly see the benefit of automation processes. The most critical automation process being
the test result analysis, where we saw a 26% reduction of a typical SME position’s usage of
time on test result analysis tasks in a development project.

RQ: How can automation of test processes improve the verification of complex systems?

We see an increased system robustness through the different SRQ discussions above. All the
four areas we have looked at regarding automation processes have proved to be beneficial
for the overall product robustness. The company will be able to detect more of the inherent
errors and undesired behaviors in a complex system, and do so earlier, by increasing the
test and analysis coverage and reducing the time spent to perform these actions. The
proposed semi-automated test process with a better human-machine task balance can

reduce project delays for the company significantly. Based on prior knowledge from a
previous case study,17 the company is able to test a system more effectively through use of
OAs matching the provided test input data to generate necessary test scenarios,
contributing to earlier detection of errors.

Conclusion

This empirical case study serves as a “proof of concept” for automation processes when it
comes to increased test coverage. We have been able to see promising results within all the
four categories we have looked at. First, we can set up testing to ensure the desired test
coverage in an effective and efficient way using OAs. E.g., the case company only needs to
provide one input file to trigger twenty-five different tests as part of one OA, being the tests
necessary for the company to extract the desired level of information. Second, we can
execute testing efficiently through removal of human-in-the-loop. E.g., the case company
can save fifteen to thirty minutes per test. Third, we can analyze significantly more test
results during a given period through use of scripting. E.g., the case company can analyze
one test in a few seconds compared to typically two hours. However, an interface update
strategy would be beneficial to reduce the maintenance cost. Fourth, we can create test
documentation in a fraction of the time by the use of an automated test documentation
process. E.g., the case company can produce a test report in 1.5 minutes compared to one
week. Fifth, the overall project cost could be significantly reduced even with investment and
maintenance cost for automated test processes. E.g., a typical SME can reduce 26% of time
spent on test result analysis by investing in automation processes and avoiding lengthy
manual test result analysis tasks.

We assess these findings to be useful for the industry developing complex cyber-physical
systems in general and for the case company in specific. However, this study is limited in
the way that we have done one case study in one project in one company. The described
techniques may have a bias toward this particular case. Further research is necessary to
establish a best practice for human-machine task balance, substantiating the effectiveness
and efficiency in different systems in various contexts.

Acknowledgements. We would like to acknowledge the Research Council of Norway for
their funding, grant number 321830. Also, the KONGSBERG company for sharing relevant
industry information through their SMEs and databases. Especially, Bjoern Victor Larsen
and Oluf Tonning from KONGSBERG have contributed with their systems engineering- and
industrial expertise. Finally, Elisabet Syverud at the University of South-Eastern Norway
(USN) has provided guidance to make this paper part of a larger PhD project. Authors have
no conflict of interest relevant to this article.

References
1. KONGSBERG. Accessed 14th October, 2022. www.kongsberg.com
2. Haugen RA, Mansouri M. Applying Systems Thinking to Frame and Explore a Test
System for Product Verification; a Case Study in Large Defence Projects. Wiley; 2020:78-93.

https://d.docs.live.net/df4cc042d285329e/Documents/PhD/Journaler/Deliveries_Wiley/Paper8/re-submission/www.kongsberg.com

3. Haugen RA, Skeie N-O, Muller G, Syverud E. Detecting emergence in engineered
systems: A literature review and synthesis approach. Systems Engineering. 2023;26(4):463-
481. doi:10.1002/sys.21660
4. Kjeldaas KA, Haugen RA, Syverud E. Challenges in Detecting Emergent Behavior in
System Testing. Wiley; 2021:1211-1228.
5. Skreddernes O, Haugen RA, Haskins C. Coping with Verification in Complex
Engineered Product Development. Wiley; 2023:482-502.
6. Raman R, Jeppu Y. An Approach for Formal Verification of Machine Learning based
Complex Systems. 2019:544-559.
7. Raman R, Jeppu Y. Formal validation of emergent behavior in a machine learning
based collision avoidance system. In: SYSCON 2020 - 14th Annual IEEE International Systems
Conference, Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2020:
8. Raman R, D'Souza M. Decision learning framework for architecture design decisions
of complex systems and system-of-systems. Article. Systems Engineering. Nov
2019;22(6):538-560. doi:10.1002/sys.21517
9. Raman R, Jeppu Y. Does the Complex SoS Have Negative Emergent Behavior?
Looking for Violations Formally. In: 15th Annual IEEE International Systems Conference,
SysCon 2021 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; 2021:
10. Raman R, Gupta N, Jeppu Y. Framework for Formal Verification of Machine Learning
Based Complex System-of-System. Wiley; 2021:
11. Murugesan A, Raman R. Reinforcement Learning for Emergent Behavior Evolution in
Complex System-of-Systems. IARIA; 2021:
12. Enoiu E, Sundmark D, Causevic A, Pettersson P. A Comparative Study of Manual and
Automated Testing for Industrial Control Software. ResearchGate; 2017:412-417.
13. Øvergaard A, Muller G. System Verification by Automatic Testing. Wiley; 2013:356-
367.
14. Giammarco K. Practical modeling concepts for engineering emergence in systems of
systems. 2017:1-6.
15. Szabo C, Teo Y. An integrated approach for the validation of emergence in
component-based simulation models. 2012:2739-2749.
16. Roy RK. A Primer on the Taguchi Method. 2nd ed. Society of Manufacturing
Engineers; 2010:304.
17. Haugen RA, Ghaderi A. Modelling and Simulation of Detection Rates of Emergent
Behaviors in System Integration Test Regimes. Linköping Electronic Conference
Proceedings; 2021:
18. Minitab. Minitab. Accessed 29th March, 2023. www.minitab.com
19. Python. Accessed 29th March, 2023. www.python.org
20. Five Years of Multi-Disciplinary Academic and Industrial Research; Lessons Learned.
http://www.gaudisite.nl/.
21. Industry-as-Laboratory Applied in Practice: The Boderc Project.
http://www.gaudisite.nl/.
22. Dassault. Accessed 10th October, 2023. www.3ds.com/
23. SEBoK. Robert Cloutier EiC, ed. System Integration. San Diego, CA: International
Council on Systems Engineering (INCOSE); 2023. Accessed 20th November 2023.
https://sebokwiki.org/w/index.php?title=System_Integration&oldid=67584

https://d.docs.live.net/df4cc042d285329e/Documents/PhD/Journaler/Deliveries_Wiley/Paper8/re-submission/www.minitab.com
https://d.docs.live.net/df4cc042d285329e/Documents/PhD/Journaler/Deliveries_Wiley/Paper8/re-submission/www.python.org
http://www.gaudisite.nl/
http://www.gaudisite.nl/
https://d.docs.live.net/df4cc042d285329e/Documents/PhD/Journaler/Deliveries_Wiley/Paper8/re-submission/www.3ds.com/
https://sebokwiki.org/w/index.php?title=System_Integration&oldid=67584

24. Feiler PH, Hanson J, de Niz D, Wrage L. System Architecture Virtual Integration: An
Industrial Case Study. 2009. http://www.sei.cmu.edu
25. Incose, Wiley. INCOSE Systems Engineering Handbook. John Wiley & Sons,
Incorporated; 2015.

Biography

Rune André Haugen is an industrial-PhD candidate at the
University of South-Eastern Norway (USN). He was in service with
the Royal Norwegian Air Force (RNoAF) from 1997 to 2003,
including graduation from the RNoAF Officer Candidate School in
Stavern (1999) and the RNoAF Academy in Trondheim (2001). He
holds both a BSc (2006) and a MSc (2013) in Systems Engineering
from USN. He has worked as a design engineer at FMC Kongsberg
Subsea from 2006 to 2008 (3D modeling), and as a system
engineer at Kongsberg Defence and Aerospace since 2008 (system
design and system test).

Nils-Olav Skeie got his MSc in Cybernetics from Norwegian
University of Science and Technology (NTNU) in 1985. He worked
with system development within the computer, aviation and
maritime industry for more than 20 years before receiving a PhD
within machine learning in 2008 in a cooperation between NTNU
and the University of South-Eastern Norway (USN). In 2006 he
went back to the academia and has been teaching BSc, MSc and
PhD students in software engineering and system engineering. He
continued to work as a part time system architect for the maritime
industry from 2008 to 2015. He became a professor of industrial
machine learning at USN in 2020.

Gerrit Muller, originally from the Netherlands, received his MSc
in physics from the University of Amsterdam in 1979. He worked
from 1980 until 1997 at Philips Medical Systems as a system
architect, followed by two years at ASML as a manager of systems
engineering, returning to Philips (Research) in 1999. Since 2003
he has worked as a senior research fellow at the Embedded
Systems Institute in Eindhoven, focusing on developing system
architecture methods and the education of new system architects,
receiving his PhD in 2004. In January 2008, he became a full
professor of systems engineering at the University of South-
Eastern Norway. He continues to work as a senior research fellow
at the Embedded Systems Institute in Eindhoven in a part-time
position. All information (System Architecture articles, course

http://www.sei.cmu.edu/

material, curriculum vitae) can be found at: Gaudí systems
architecting http://www.gaudisite.nl/

http://www.gaudisite.nl/

